Suppr超能文献

用于生物医学的表面工程化WS纳米杂化物

Surface-Engineered WS Nanohybrids for Implications in Biomedicine.

作者信息

Chakraborty Aishik, Luo Wei, Shamiya Yasmeen, Zahid Alap Ali, Grynyshyn Michael Roman, Bainbridge Nicholas A, Liu Yihong, Veliz Lorena, Lagugné-Labarthet François, Liu Lijia, Hamilton Douglas, Paul Arghya

机构信息

Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada.

Collaborative Specialization in Musculoskeletal Health Research and Bone and Joint Institute, The University of Western Ontario, London, Ontario N6A 5B9, Canada.

出版信息

ACS Appl Mater Interfaces. 2025 Jul 23;17(29):41649-41665. doi: 10.1021/acsami.5c06846. Epub 2025 Jul 9.

Abstract

Transition metal dichalcogenides (TMDs) nanosheets, known for their distinctive structural and physicochemical characteristics, have become valuable tools in various biomedical fields, including drug delivery and tissue engineering. Here, we have developed a facile approach to synthesize surface-modified TMD nanosheets that exhibit several smart properties, such as near-infrared (NIR) light-responsiveness, ultrasound-responsiveness, and bactericidal behavior. The surface modification was performed using a redox reaction, which decorated liquid-exfoliated, 2D, ultrathin nanosheets of tungsten disulfide (WS) with silver nanospheres. TEM and AFM images, along with analytical techniques such as XPS, FTIR, powder-XRD, UV-vis, and Confocal Raman spectroscopy, confirmed the binding of silver to the nanosheets, resulting in heterostructured nanohybrids (nWS). Additional structural information about this surface-engineered material was obtained using synchrotron radiation-based instrumentation techniques, including X-ray absorption fine structure spectroscopy (XAFS). Moreover, we demonstrate that nWS nanohybrids are capable of inhibiting biofilms of methicillin-resistant (MRSA), a widely prevalent causative agent of healthcare-associated bacterial infections. The nanohybrids can also convert incident near-infrared (NIR) light to thermal energy and exhibit enhanced bactericidal potential. 1 mg/mL of nWS was able to increase suspension temperatures by 30 °C. A colony forming unit assay with NIR-exposed nWS showed antibiotic-free prevention of MRSA growth. Next, we develop a nWS-integrated polymeric hydrogel system capable of 3D-biopriting hydrogel structures with user-defined geometry for tissue engineering applications. Finally, we evaluate the cytocompatibility and biocompatibility of this nanocomposite hydrogel platform by subcutaneously implanting it in immunocompetent mice. Histological staining revealed excellent host-tissue integration, vasculogenesis, and a minimal immune response around the implant's periphery. Taken together, we envision surface-engineered WS nanosheets, alone or in combination with hydrogels, as a high-performance multifunctional biomaterial for implications in biomedicine.

摘要

过渡金属二硫属化物(TMDs)纳米片以其独特的结构和物理化学特性而闻名,已成为包括药物递送和组织工程在内的各种生物医学领域中的重要工具。在此,我们开发了一种简便的方法来合成表面改性的TMD纳米片,这些纳米片具有多种智能特性,如近红外(NIR)光响应性、超声响应性和杀菌行为。表面改性是通过氧化还原反应进行的,该反应用银纳米球修饰了液体剥离的二维超薄二硫化钨(WS)纳米片。透射电子显微镜(TEM)和原子力显微镜(AFM)图像,以及X射线光电子能谱(XPS)、傅里叶变换红外光谱(FTIR)、粉末X射线衍射(powder-XRD)、紫外可见光谱(UV-vis)和共焦拉曼光谱等分析技术,证实了银与纳米片的结合,从而形成了异质结构的纳米杂化物(nWS)。使用基于同步辐射的仪器技术,包括X射线吸收精细结构光谱(XAFS),获得了有关这种表面工程材料的更多结构信息。此外,我们证明nWS纳米杂化物能够抑制耐甲氧西林金黄色葡萄球菌(MRSA)的生物膜,MRSA是医疗相关细菌感染中广泛流行的病原体。纳米杂化物还可以将入射的近红外(NIR)光转化为热能,并具有增强的杀菌潜力。1 mg/mL的nWS能够使悬浮液温度升高30℃。对经近红外照射的nWS进行的菌落形成单位测定表明,其可在无抗生素的情况下预防MRSA生长。接下来,我们开发了一种集成nWS的聚合物水凝胶系统,该系统能够通过3D生物打印具有用户定义几何形状的水凝胶结构,用于组织工程应用。最后,我们通过将这种纳米复合水凝胶平台皮下植入免疫功能正常的小鼠体内,评估了其细胞相容性和生物相容性。组织学染色显示宿主组织整合良好、血管生成良好,并且植入物周边的免疫反应最小。综上所述,我们设想表面工程化的WS纳米片单独或与水凝胶结合,作为一种高性能的多功能生物材料,在生物医学中具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验