Suppr超能文献

绘制纳米颗粒免疫毒性的新前沿:当前、新兴及未来方法的视角

Charting new frontiers in nanoparticle immunotoxicity: A perspective on current, emerging, and future approaches.

作者信息

Dobrovolskaia Marina A

机构信息

Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, 21702, USA.

出版信息

Biochem Biophys Res Commun. 2025 Jun 30;777:152280. doi: 10.1016/j.bbrc.2025.152280.

Abstract

Advances in understanding nanoparticles' interactions with the immune system in the last two decades have shaped not only the way immunotoxicity is analyzed but also the way nanoparticles are designed for therapeutic applications. Current approaches for assessing nanoparticle immunotoxicity rely on a conventional framework established and optimized for various drug product types, including biotechnology therapeutics, small-molecule drugs, and therapeutic nucleic acids. The sophistication offered by nanotechnology drug delivery carriers is often associated with the increased complexity of the physicochemical properties of nanotechnology-based formulations and their behavior in biological systems. Such complexity often creates challenges for preclinical studies and motivates the expansion of the methodological framework to include novel approaches and optimize the existing ones. Herein, I review the experience of the Nanotechnology Characterization Laboratory in analyzing the immunotoxicity of cancer nanotechnology concepts to highlight current and emerging approaches and outline the future direction for the field.

摘要

在过去二十年中,对纳米颗粒与免疫系统相互作用的理解取得了进展,这不仅塑造了免疫毒性的分析方式,也塑造了用于治疗应用的纳米颗粒的设计方式。目前评估纳米颗粒免疫毒性的方法依赖于为各种药物产品类型(包括生物技术治疗药物、小分子药物和治疗性核酸)建立和优化的传统框架。纳米技术药物递送载体所带来的复杂性通常与基于纳米技术的制剂的物理化学性质及其在生物系统中的行为的增加的复杂性相关联。这种复杂性常常给临床前研究带来挑战,并促使方法框架的扩展,以纳入新方法并优化现有方法。在此,我回顾了纳米技术表征实验室在分析癌症纳米技术概念的免疫毒性方面的经验,以突出当前和新兴的方法,并概述该领域的未来方向。

相似文献

1
Charting new frontiers in nanoparticle immunotoxicity: A perspective on current, emerging, and future approaches.
Biochem Biophys Res Commun. 2025 Jun 30;777:152280. doi: 10.1016/j.bbrc.2025.152280.
2
Advances in Phytochemical-based Nanocarrier Approaches for Rheumatoid Arthritis: Challenges and Scope for Future-generation Formulations.
Recent Adv Inflamm Allergy Drug Discov. 2025;19(2):189-212. doi: 10.2174/0127722708304673240903184606.
5
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
6
A review on targeting tunable nanocarrier interaction, physiochemical properties, and futuristic nanocarrier.
Biochim Biophys Acta Mol Basis Dis. 2025 Oct;1871(7):167956. doi: 10.1016/j.bbadis.2025.167956. Epub 2025 Jun 18.
7
Emerging nanoparticle-based strategies to provide therapeutic benefits for stroke.
Neural Regen Res. 2025 Jun 19. doi: 10.4103/NRR.NRR-D-24-01492.
8
Transferrin-guided liposomal nanocarriers: A strategy for targeted cancer treatment.
Int J Biol Macromol. 2025 Jun 20;319(Pt 3):145377. doi: 10.1016/j.ijbiomac.2025.145377.
10
Enhancing therapy with nano-based delivery systems: exploring the bioactive properties and effects of apigenin.
Ther Deliv. 2024;15(9):717-735. doi: 10.1080/20415990.2024.2386928. Epub 2024 Sep 11.

本文引用的文献

1
Diagnostic accuracy of ChatGPT-4 in orthopedic oncology: a comparative study with residents.
Knee. 2025 Aug;55:153-160. doi: 10.1016/j.knee.2025.04.004. Epub 2025 May 1.
3
Supervised machine learning for predicting drug release from acetalated dextran nanofibers.
Biomater Sci. 2025 May 13;13(10):2806-2823. doi: 10.1039/d5bm00259a.
4
Nanoparticles may influence mast cells gene expression profiles without affecting their degranulation function.
Nanomedicine. 2025 Jun;66:102818. doi: 10.1016/j.nano.2025.102818. Epub 2025 Apr 2.
6
Rod and spherical selenium nanoparticles: Physicochemical properties and effects on red blood cells and neutrophils.
Biochim Biophys Acta Gen Subj. 2025 Apr;1869(5):130777. doi: 10.1016/j.bbagen.2025.130777. Epub 2025 Feb 19.
7
Combination of cowpea mosaic virus (CPMV) intratumoral therapy and oxaliplatin chemotherapy.
Mater Adv. 2024 Jun 7;5(11):4878-4888. doi: 10.1039/d4ma00427b. Epub 2024 May 7.
8
Unveiling the Hidden Risks: An Update Decade-Long Analysis of Abraxane-Related Adverse Events from the FAERS Database.
Int J Nanomedicine. 2024 Nov 14;19:11847-11858. doi: 10.2147/IJN.S490400. eCollection 2024.
9
Cowpea mosaic virus intratumoral immunotherapy maintains stability and efficacy after long-term storage.
Bioeng Transl Med. 2024 Jul 7;9(6):e10693. doi: 10.1002/btm2.10693. eCollection 2024 Nov.
10
Plant Virus Intratumoral Immunotherapy with CPMV and PVX Elicits Durable Antitumor Immunity in a Mouse Model of Diffuse Large B-Cell Lymphoma.
Mol Pharm. 2024 Dec 2;21(12):6206-6219. doi: 10.1021/acs.molpharmaceut.4c00507. Epub 2024 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验