Suppr超能文献

评估微生物延迟期持续时间的估计方法:使用酿酒酵母实证数据和模拟数据的比较分析

Assessing methods for estimating microbial lag phase duration: a comparative analysis using Saccharomyces cerevisiae empirical and simulated data.

作者信息

Opalek Monika, Wloch-Salamon Dominika, Smug Bogna J

机构信息

Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 31-007 Krakow, Poland.

Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Krakow, Poland.

出版信息

FEMS Yeast Res. 2025 Jan 30;25. doi: 10.1093/femsyr/foaf033.

Abstract

The lag phase is a temporary, nonreplicative period observed when a microbial population is introduced to a new, nutrient-rich environment. Although the theoretical concept of growth phases is clear, the practical application of methods for estimating lag lengths is often challenging. In fact, there are two distinct assumptions: (i) that cells do not divide at all during the lag phase or (ii) that they divide but at a suboptimal rate. Therefore, the choice of method should consider not only technical limitations but also consistency with the biological context. Here, we investigate the performance of the most common lag estimation methods, using empirical and simulated datasets. We apply different biological scenarios and simulate curves with varying parameters (i.e. growth rate, noise level, and frequency of measurements) to test their impact on the estimated lag phase duration. Our validation shows that infrequent measurements, low growth rate, longer lag phases, or higher level of noise in the measurements result in higher bias and higher variance of lag estimation. Additionally, in case of noisy data, the methods relying on model fitting perform best.

摘要

延滞期是指当微生物群体被引入到一个新的、营养丰富的环境中时所观察到的一个暂时的、非复制期。尽管生长阶段的理论概念很清晰,但估计延滞期长度的方法在实际应用中往往具有挑战性。事实上,存在两种不同的假设:(i)细胞在延滞期根本不分裂,或者(ii)它们分裂但速率低于最佳水平。因此,方法的选择不仅应考虑技术限制,还应考虑与生物学背景的一致性。在这里,我们使用经验数据集和模拟数据集研究了最常见的延滞期估计方法的性能。我们应用不同的生物学场景,并模拟具有不同参数(即生长速率、噪声水平和测量频率)的曲线,以测试它们对估计的延滞期持续时间的影响。我们的验证表明,测量次数少、生长速率低、延滞期长或测量中的噪声水平高会导致延滞期估计的偏差和方差更高。此外,在数据有噪声的情况下,依赖模型拟合的方法表现最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afc6/12258147/65167a82ad4c/foaf033fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验