Ha Ji Yeon, Song Tae Wook, Jebamani Petrina, Lee Sun-Gu, Jung Sang Taek
Department of Biomedical Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
J Biol Eng. 2025 Jul 11;19(1):63. doi: 10.1186/s13036-025-00536-6.
Advancing cancer immunotherapy requires engineering synthetic immunomodulators that integrate precise receptor targeting, tunable activity, and compatibility with modular biologic formats. The Inducible T-cell Co-Stimulator (ICOS) is a clinically validated co-stimulatory receptor whose engagement enhances T-cell function. However, the development of ICOS-targeting biologics has been hindered by limited receptor affinity and format-dependent agonist activity. To address this, we applied a protein engineering framework to optimize the ICOS ligand (ICOS-L) as a high-affinity, modular component for precision immune modulation.
Using yeast surface display-based directed evolution, we identified an ICOS-L variant (Y8) containing two synergistic mutations (Q51P and N57H) that improved human ICOS (hICOS) binding affinity by ~ 100-fold relative to wild-type. Structural modeling revealed that Q51P enhances backbone rigidity via a proline-induced conformational constraint, while N57H introduces a salt bridge with Asp86 in hICOS. These mutations reconfigure the receptor-binding interface to support high-affinity engagement. Functionally, Y8 induced potent T-cell proliferation and IFN-γ secretion. When genetically fused to pembrolizumab, Y8 further enhanced T-cell activation and tumor cell lysis, demonstrating synthetic synergy between PD-1 blockade and ICOS agonism. Among fusion formats, light-chain conjugation (pembrolizumab-L-Y8) exhibited superior functional output, highlighting the importance of geometric configuration in optimizing fusion-based agonism.
This study establishes Y8 as a high-affinity ICOS-L variant with robust co-stimulatory function, capable of potentiating anti-PD-1 immunotherapy through modular fusion design. The integration of Y8 into therapeutic antibody scaffolds provides a versatile engineering framework for the development of next-generation immunomodulatory biologics, offering opportunities to overcome resistance and enhance clinical efficacy in cancer immunotherapy.
推进癌症免疫疗法需要构建合成免疫调节剂,这些调节剂要整合精确的受体靶向、可调节的活性以及与模块化生物形式的兼容性。诱导性T细胞共刺激分子(ICOS)是一种经过临床验证的共刺激受体,其激活可增强T细胞功能。然而,靶向ICOS的生物制剂的开发受到受体亲和力有限和形式依赖的激动剂活性的阻碍。为了解决这个问题,我们应用了一种蛋白质工程框架来优化ICOS配体(ICOS-L),使其成为用于精确免疫调节的高亲和力模块化组件。
通过基于酵母表面展示的定向进化,我们鉴定出一种ICOS-L变体(Y8),它包含两个协同突变(Q51P和N57H),相对于野生型,其与人ICOS(hICOS)的结合亲和力提高了约100倍。结构建模显示,Q51P通过脯氨酸诱导的构象限制增强了主链刚性,而N57H在hICOS中引入了与Asp86的盐桥。这些突变重新配置了受体结合界面以支持高亲和力结合。在功能上,Y8诱导了强烈的T细胞增殖和IFN-γ分泌。当与帕博利珠单抗基因融合时,Y8进一步增强了T细胞活化和肿瘤细胞裂解,证明了PD-1阻断和ICOS激动之间的合成协同作用。在融合形式中,轻链缀合(帕博利珠单抗-L-Y8)表现出卓越的功能输出,突出了几何构型在优化基于融合的激动作用中的重要性。
本研究确定Y8为具有强大共刺激功能的高亲和力ICOS-L变体,能够通过模块化融合设计增强抗PD-1免疫疗法。将Y8整合到治疗性抗体支架中为开发下一代免疫调节生物制剂提供了一个通用的工程框架,为克服癌症免疫疗法中的耐药性和提高临床疗效提供了机会。