Suppr超能文献

利用近红外光谱和化学计量学对橄榄油和葵花籽油进行质量预测:一种可持续的方法。

The Quality Prediction of Olive and Sunflower Oils Using NIR Spectroscopy and Chemometrics: A Sustainable Approach.

作者信息

Mehany Taha, González-Sáiz José M, Pizarro Consuelo

机构信息

Department of Chemistry, University of La Rioja, 26006 Logroño, Spain.

出版信息

Foods. 2025 Jun 20;14(13):2152. doi: 10.3390/foods14132152.

Abstract

This study presents a novel approach combining near-infrared (NIR) spectroscopy with multivariate calibration to develop simplified yet robust regression models for evaluating the quality of various edible oils. Using a reduced number of NIR wavelengths selected via the stepwise decorrelation method (SELECT) and ordinary least squares (OLS) regression, the models quantify pigments (carotenoids and chlorophyll), antioxidant activity, and key sensory attributes (rancid, fruity green, fruity ripe, bitter, and pungent) in nine extra virgin olive oil (EVOO) varieties. The dataset also includes low-quality olive oils (e.g., refined and pomace oils, supplemented or not with hydroxytyrosol) and sunflower oils, both before and after deep-frying. SELECT improves model performance by identifying key wavelengths-up to 30 out of 700-and achieves high correlation coefficients (R = 0.86-0.96) with low standard errors. The number of latent variables ranges from 26 to 30, demonstrating adaptability to different oil properties. The best models yield low leave-one-out (LOO) prediction errors, confirming their accuracy (e.g., 1.36 mg/kg for carotenoids and 0.88 for rancidity). These results demonstrate that SELECT-OLS regression combined with NIR spectroscopy provides a fast, cost-effective, and reliable method for assessing oil quality under diverse processing conditions, including deep-frying, making it highly suitable for quality control in the edible oils industry.

摘要

本研究提出了一种将近红外(NIR)光谱与多变量校准相结合的新方法,以开发简化而稳健的回归模型来评估各种食用油的质量。通过逐步去相关方法(SELECT)选择较少数量的近红外波长,并结合普通最小二乘法(OLS)回归,这些模型可对9个特级初榨橄榄油(EVOO)品种中的色素(类胡萝卜素和叶绿素)、抗氧化活性以及关键感官属性(酸败、青果味、熟果味、苦味和辛辣味)进行量化。数据集还包括低质量的橄榄油(如精炼油和果渣油,添加或未添加羟基酪醇)以及葵花籽油,涵盖了油炸前后的情况。SELECT通过识别关键波长(700个波长中多达30个)提高了模型性能,并获得了具有低标准误差的高相关系数(R = 0.86 - 0.96)。潜在变量的数量范围为26至30,表明该方法对不同油品性质具有适应性。最佳模型产生较低的留一法(LOO)预测误差,证实了其准确性(例如,类胡萝卜素为1.36 mg/kg,酸败度为0.88)。这些结果表明,SELECT - OLS回归与近红外光谱相结合,为评估包括油炸在内的各种加工条件下的油品质量提供了一种快速、经济高效且可靠的方法,使其非常适合食用油行业的质量控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4e3/12248787/186d4cef9dac/foods-14-02152-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验