Wang Yantao, Ma Zhenyu, Li Guoliang, Meng Xiangzhao, Duan Shuonan, Liu Zihui, Zhao Min, Guo Xiulin, Zhang Huaning
School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056000, China.
Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China.
Plants (Basel). 2025 Jun 25;14(13):1950. doi: 10.3390/plants14131950.
Heat shock transcription factor (Hsf) plays a pivotal role in regulating plant growth, development, and stress responses. Hsf activates or represses target gene transcription by binding to the heat shock element (HSE) of downstream genes. However, the specific interaction sites between Hsf and the HSE in the promoter remain unclear. In this study, the critical amino acid residues of ZmHsf17 and the paralogous ZmHsf05 involved in DNA binding were identified using molecular docking models, site-directed mutagenesis, and the electrophoretic mobility shift assay (EMSA). The results reveal that both ZmHsf17 and ZmHsf05 bind to the HSE of the promoter via a conserved arginine residue located in the α3 helix of their DNA-binding domains. Sequence substitution experiments among distinct HSEs demonstrated that flanking sequences upstream and downstream of the HSE core synergistically contribute to the specificity of DNA-binding domain recognition. Comparative evolutionary analysis of DNA-binding domain sequences from 25 phylogenetically diverse species reveals that the α3 helix constitutes the most conserved structural element. This study elucidates the key interaction sites between maize HsfA2 and its target genes, providing theoretical insights into the binding specificity to the HSEs of the plant's Hsf family and the functional divergence. Additionally, these findings offer new targets for the precise engineering of Hsf proteins and synthetic HSEs.
热激转录因子(Hsf)在调节植物生长、发育和应激反应中起着关键作用。Hsf通过与下游基因的热激元件(HSE)结合来激活或抑制靶基因转录。然而,Hsf与启动子中HSE之间的具体相互作用位点仍不清楚。在本研究中,利用分子对接模型、定点诱变和电泳迁移率变动分析(EMSA)鉴定了ZmHsf17和同源的ZmHsf05中参与DNA结合的关键氨基酸残基。结果表明,ZmHsf17和ZmHsf05均通过位于其DNA结合结构域α3螺旋中的保守精氨酸残基与启动子的HSE结合。不同HSE之间的序列替换实验表明,HSE核心上下游的侧翼序列协同作用,有助于DNA结合结构域识别的特异性。对25个系统发育不同物种的DNA结合结构域序列进行比较进化分析,发现α3螺旋构成了最保守的结构元件。本研究阐明了玉米HsfA2与其靶基因之间的关键相互作用位点,为植物Hsf家族对HSEs的结合特异性和功能分化提供了理论见解。此外,这些发现为Hsf蛋白和合成HSEs的精确工程提供了新的靶点。