Suppr超能文献

DFN - YOLO:在宽带频谱中检测窄带信号

DFN-YOLO: Detecting Narrowband Signals in Broadband Spectrum.

作者信息

Jiang Kun, Peng Kexiao, Feng Yuan, Guo Xia, Tang Zuping

机构信息

National Key Laboratory of Intelligent Spatial Information, Beijing 100029, China.

Beijing Institute of Tracking and Telecommunications Technology, Beijing 100094, China.

出版信息

Sensors (Basel). 2025 Jul 5;25(13):4206. doi: 10.3390/s25134206.

Abstract

With the rapid development of wireless communication technologies and the increasing demand for efficient spectrum utilization, broadband spectrum sensing has become critical in both civilian and military fields. Detecting narrowband signals under broadband environments, especially under low-signal-to-noise-ratio (SNR) conditions, poses significant challenges due to the complexity of time-frequency features and noise interference. To this end, this study presents a signal detection model named deformable feature-enhanced network-You Only Look Once (DFN-YOLO), specifically designed for blind signal detection in broadband scenarios. The DFN-YOLO model incorporates a deformable channel feature fusion network (DCFFN), replacing the concatenate-to-fusion (C2f) module to enhance the extraction and integration of channel features. The deformable attention mechanism embedded in DCFFN adaptively focuses on critical signal regions, while the loss function is optimized to the focal scaled intersection over union (Focal_SIoU), improving detection accuracy under low-SNR conditions. To support this task, a signal detection dataset is constructed and utilized to evaluate the performance of DFN-YOLO. The experimental results for broadband time-frequency spectrograms demonstrate that DFN-YOLO achieves a mean average precision (mAP50-95) of 0.850, averaged over IoU thresholds ranging from 0.50 to 0.95 with a step of 0.05, significantly outperforming mainstream object detection models such as YOLOv8, which serves as the benchmark baseline in this study. Additionally, the model maintains an average time estimation error within 5.55×10-5 s and provides preliminary center frequency estimation in the broadband spectrum. These findings underscore the strong potential of DFN-YOLO for blind signal detection in broadband environments, with significant implications for both civilian and military applications.

摘要

随着无线通信技术的快速发展以及对高效频谱利用需求的不断增加,宽带频谱感知在民用和军事领域都变得至关重要。在宽带环境下检测窄带信号,尤其是在低信噪比(SNR)条件下,由于时频特征的复杂性和噪声干扰,带来了重大挑战。为此,本研究提出了一种名为可变形特征增强网络-你只看一次(DFN-YOLO)的信号检测模型,专门用于宽带场景下的盲信号检测。DFN-YOLO模型包含一个可变形通道特征融合网络(DCFFN),取代了拼接转融合(C2f)模块以增强通道特征的提取和整合。嵌入在DCFFN中的可变形注意力机制自适应地聚焦于关键信号区域,同时将损失函数优化为焦点缩放交并比(Focal_SIoU),提高了低信噪比条件下的检测精度。为支持此任务,构建并利用了一个信号检测数据集来评估DFN-YOLO的性能。宽带时频频谱图的实验结果表明,DFN-YOLO在交并比阈值从0.50到0.95、步长为0.05的范围内实现了0.850的平均精度均值(mAP50-95),显著优于作为本研究基准基线的主流目标检测模型,如YOLOv8。此外,该模型的平均时间估计误差保持在5.55×10-5 s以内,并在宽带频谱中提供初步的中心频率估计。这些发现凸显了DFN-YOLO在宽带环境下进行盲信号检测的强大潜力,对民用和军事应用都具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c559/12252476/bdad5ff377e5/sensors-25-04206-g001.jpg

相似文献

1
DFN-YOLO: Detecting Narrowband Signals in Broadband Spectrum.
Sensors (Basel). 2025 Jul 5;25(13):4206. doi: 10.3390/s25134206.
2
VBM-YOLO: an enhanced YOLO model with reduced information loss for vehicle body markers detection.
PeerJ Comput Sci. 2025 Jun 2;11:e2932. doi: 10.7717/peerj-cs.2932. eCollection 2025.
3
DSF-YOLO for weld defect detection in X-ray images with dynamic staged fusion.
Sci Rep. 2025 Jul 2;15(1):23305. doi: 10.1038/s41598-025-06811-2.
7
YOLO-GML: An object edge enhancement detection model for UAV aerial images in complex environments.
PLoS One. 2025 Jul 10;20(7):e0328070. doi: 10.1371/journal.pone.0328070. eCollection 2025.
8
PHRF-RTDETR: a lightweight weed detection method for upland rice based on RT-DETR.
Front Plant Sci. 2025 Jun 24;16:1556275. doi: 10.3389/fpls.2025.1556275. eCollection 2025.
9
DASNet a dual branch multi level attention sheep counting network.
Sci Rep. 2025 Jul 2;15(1):23228. doi: 10.1038/s41598-025-97929-w.
10
Few-shot object detection for pest insects via features aggregation and contrastive learning.
Front Plant Sci. 2025 Jun 19;16:1522510. doi: 10.3389/fpls.2025.1522510. eCollection 2025.

本文引用的文献

1
A Radio Frequency Region-of-Interest Convolutional Neural Network for Wideband Spectrum Sensing.
Sensors (Basel). 2023 Jul 18;23(14):6480. doi: 10.3390/s23146480.
2
Blind Detection of Broadband Signal Based on Weighted Bi-Directional Feature Pyramid Network.
Sensors (Basel). 2023 Jan 30;23(3):1525. doi: 10.3390/s23031525.
4
5
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验