Li Yahui, Wang Xujie, Liu Xuhui
Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.
Department of Emergency ICU, The Affiliated Hospital of Qinghai University, Xining, China.
Sci Rep. 2025 Jul 12;15(1):25240. doi: 10.1038/s41598-025-10906-1.
Gastrointestinal bleeding (GIB) occurs more frequently in cardiovascular patients than in the general population, significantly affecting morbidity and mortality. However, existing predictive models often lack sufficient accuracy and interpretability. We developed an interpretable and practical machine learning model to predict the risk of GIB in cardiology inpatients. This retrospective study analyzed electronic health records of 10,706 patients admitted to the Department of Cardiology at the Second Hospital of Lanzhou University from October 8, 2019, to October 30, 2024. Variables with > 30% missing data were excluded, leaving 35 potential predictors. The dataset was randomly split into a training cohort (80%, n = 9,356) and a test cohort (20%, n = 2,340). GIB occurred in 110 patients (1.03%). Ten variables were identified as the strongest predictors: hemoglobin (importance score: 0.16), creatinine (0.12), D-dimer (0.10), NT-proBNP (0.06), glucose (0.06), white blood cell count (0.06), body weight (0.06), serum albumin (0.04), urea (0.04), and age (0.04). Among seven machine learning classifiers, XGBoost performed best, with an AUC of 0.995 in the validation cohort. In the validation set, the model achieved an accuracy of 0.975, sensitivity of 0.769, and specificity of 0.996. SHapley Additive exPlanations (SHAP) analysis confirmed hemoglobin, creatinine, and D-dimer as the top contributors to GIB risk. The model demonstrated excellent calibration (Brier score = 0.016), and decision curve analysis supported its clinical utility across various risk thresholds. The XGBoost model offers high accuracy and interpretability in predicting GIB risk among cardiology inpatients. It holds promise for clinical decision support by enabling early risk identification and personalized prevention strategies.
胃肠道出血(GIB)在心血管疾病患者中比在普通人群中更频繁发生,对发病率和死亡率有显著影响。然而,现有的预测模型往往缺乏足够的准确性和可解释性。我们开发了一种可解释且实用的机器学习模型,以预测心脏病住院患者发生GIB的风险。这项回顾性研究分析了2019年10月8日至2024年10月30日期间兰州大学第二医院心内科收治的10706例患者的电子健康记录。排除数据缺失率>30%的变量,留下35个潜在预测因子。数据集被随机分为训练队列(80%,n = 9356)和测试队列(20%,n = 2340)。110例患者(1.03%)发生了GIB。确定了10个最强预测因子:血红蛋白(重要性得分:0.16)、肌酐(0.12)、D - 二聚体(0.10)、N末端脑钠肽前体(NT - proBNP)(0.06)、葡萄糖(0.06)、白细胞计数(0.06)、体重(0.06)、血清白蛋白(0.04)、尿素(0.04)和年龄(0.04)。在七个机器学习分类器中,XGBoost表现最佳,在验证队列中的AUC为0.995。在验证集中,该模型的准确率为0.975,灵敏度为0.769,特异性为0.996。SHapley加性解释(SHAP)分析证实血红蛋白、肌酐和D - 二聚体是GIB风险的主要贡献因素。该模型显示出出色的校准(Brier评分 = 0.016),决策曲线分析支持其在各种风险阈值下的临床实用性。XGBoost模型在预测心脏病住院患者的GIB风险方面具有很高的准确性和可解释性。它有望通过实现早期风险识别和个性化预防策略为临床决策提供支持。
BMC Med Inform Decis Mak. 2025-7-15
Clin Orthop Relat Res. 2024-9-1
Am J Nephrol. 2024
Am J Emerg Med. 2021-8
Nat Mach Intell. 2020-1
Cochrane Database Syst Rev. 2020-4-30
J Am Coll Cardiol. 2019-10-29