文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用可解释的XGBoost模型预测心脏病住院患者的胃肠道出血

Prediction of gastrointestinal hemorrhage in cardiology inpatients using an interpretable XGBoost model.

作者信息

Li Yahui, Wang Xujie, Liu Xuhui

机构信息

Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, Hubei, China.

Department of Emergency ICU, The Affiliated Hospital of Qinghai University, Xining, China.

出版信息

Sci Rep. 2025 Jul 12;15(1):25240. doi: 10.1038/s41598-025-10906-1.


DOI:10.1038/s41598-025-10906-1
PMID:40652010
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12255804/
Abstract

Gastrointestinal bleeding (GIB) occurs more frequently in cardiovascular patients than in the general population, significantly affecting morbidity and mortality. However, existing predictive models often lack sufficient accuracy and interpretability. We developed an interpretable and practical machine learning model to predict the risk of GIB in cardiology inpatients. This retrospective study analyzed electronic health records of 10,706 patients admitted to the Department of Cardiology at the Second Hospital of Lanzhou University from October 8, 2019, to October 30, 2024. Variables with > 30% missing data were excluded, leaving 35 potential predictors. The dataset was randomly split into a training cohort (80%, n = 9,356) and a test cohort (20%, n = 2,340). GIB occurred in 110 patients (1.03%). Ten variables were identified as the strongest predictors: hemoglobin (importance score: 0.16), creatinine (0.12), D-dimer (0.10), NT-proBNP (0.06), glucose (0.06), white blood cell count (0.06), body weight (0.06), serum albumin (0.04), urea (0.04), and age (0.04). Among seven machine learning classifiers, XGBoost performed best, with an AUC of 0.995 in the validation cohort. In the validation set, the model achieved an accuracy of 0.975, sensitivity of 0.769, and specificity of 0.996. SHapley Additive exPlanations (SHAP) analysis confirmed hemoglobin, creatinine, and D-dimer as the top contributors to GIB risk. The model demonstrated excellent calibration (Brier score = 0.016), and decision curve analysis supported its clinical utility across various risk thresholds. The XGBoost model offers high accuracy and interpretability in predicting GIB risk among cardiology inpatients. It holds promise for clinical decision support by enabling early risk identification and personalized prevention strategies.

摘要

胃肠道出血(GIB)在心血管疾病患者中比在普通人群中更频繁发生,对发病率和死亡率有显著影响。然而,现有的预测模型往往缺乏足够的准确性和可解释性。我们开发了一种可解释且实用的机器学习模型,以预测心脏病住院患者发生GIB的风险。这项回顾性研究分析了2019年10月8日至2024年10月30日期间兰州大学第二医院心内科收治的10706例患者的电子健康记录。排除数据缺失率>30%的变量,留下35个潜在预测因子。数据集被随机分为训练队列(80%,n = 9356)和测试队列(20%,n = 2340)。110例患者(1.03%)发生了GIB。确定了10个最强预测因子:血红蛋白(重要性得分:0.16)、肌酐(0.12)、D - 二聚体(0.10)、N末端脑钠肽前体(NT - proBNP)(0.06)、葡萄糖(0.06)、白细胞计数(0.06)、体重(0.06)、血清白蛋白(0.04)、尿素(0.04)和年龄(0.04)。在七个机器学习分类器中,XGBoost表现最佳,在验证队列中的AUC为0.995。在验证集中,该模型的准确率为0.975,灵敏度为0.769,特异性为0.996。SHapley加性解释(SHAP)分析证实血红蛋白、肌酐和D - 二聚体是GIB风险的主要贡献因素。该模型显示出出色的校准(Brier评分 = 0.016),决策曲线分析支持其在各种风险阈值下的临床实用性。XGBoost模型在预测心脏病住院患者的GIB风险方面具有很高的准确性和可解释性。它有望通过实现早期风险识别和个性化预防策略为临床决策提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/cc2f05e3c7e6/41598_2025_10906_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/d7b30b265a6d/41598_2025_10906_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/ed4b31781133/41598_2025_10906_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/1ada8c9d4178/41598_2025_10906_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/dbd4a4ee1faf/41598_2025_10906_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/821779b995b2/41598_2025_10906_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/f5cf42807190/41598_2025_10906_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/2f7d501ddd60/41598_2025_10906_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/019387782b8a/41598_2025_10906_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/cc2f05e3c7e6/41598_2025_10906_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/d7b30b265a6d/41598_2025_10906_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/ed4b31781133/41598_2025_10906_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/1ada8c9d4178/41598_2025_10906_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/dbd4a4ee1faf/41598_2025_10906_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/821779b995b2/41598_2025_10906_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/f5cf42807190/41598_2025_10906_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/2f7d501ddd60/41598_2025_10906_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/019387782b8a/41598_2025_10906_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cd1/12255804/cc2f05e3c7e6/41598_2025_10906_Fig9_HTML.jpg

相似文献

[1]
Prediction of gastrointestinal hemorrhage in cardiology inpatients using an interpretable XGBoost model.

Sci Rep. 2025-7-12

[2]
Interpretable prediction of hospital mortality in bleeding critically ill patients based on machine learning and SHAP.

BMC Med Inform Decis Mak. 2025-7-15

[3]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[4]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[5]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

[6]
Prediction of Insulin Resistance in Nondiabetic Population Using LightGBM and Cohort Validation of Its Clinical Value: Cross-Sectional and Retrospective Cohort Study.

JMIR Med Inform. 2025-6-13

[7]
Serum calcium-based interpretable machine learning model for predicting anastomotic leakage after rectal cancer resection: A multi-center study.

World J Gastroenterol. 2025-5-21

[8]
Development of an interpretable machine learning model for frailty risk prediction in older adult care institutions: a mixed-methods, cross-sectional study in China.

BMJ Open. 2025-7-5

[9]
Does the Presence of Missing Data Affect the Performance of the SORG Machine-learning Algorithm for Patients With Spinal Metastasis? Development of an Internet Application Algorithm.

Clin Orthop Relat Res. 2024-1-1

[10]
A Responsible Framework for Assessing, Selecting, and Explaining Machine Learning Models in Cardiovascular Disease Outcomes Among People With Type 2 Diabetes: Methodology and Validation Study.

JMIR Med Inform. 2025-6-27

本文引用的文献

[1]
Anticoagulation in Patients with Chronic Kidney Disease.

Am J Nephrol. 2024

[2]
Predictors and mortality risk of venous thromboembolism in patients with COVID-19: systematic review and meta-analysis of observational studies.

Ther Adv Cardiovasc Dis. 2022

[3]
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.

Nat Mach Intell. 2019-5

[4]
Analysis of absolute lymphocyte count in patients with COVID-19.

Am J Emerg Med. 2021-8

[5]
Endoscopic diagnosis and management of nonvariceal upper gastrointestinal hemorrhage (NVUGIH): European Society of Gastrointestinal Endoscopy (ESGE) Guideline - Update 2021.

Endoscopy. 2021-3

[6]
From Local Explanations to Global Understanding with Explainable AI for Trees.

Nat Mach Intell. 2020-1

[7]
Aspirin and other non-steroidal anti-inflammatory drugs for the prevention of dementia.

Cochrane Database Syst Rev. 2020-4-30

[8]
RE: Validation of a Machine Learning Model That Outperforms Clinical Risk Scoring Systems for Upper Gastrointestinal Bleeding.

Gastroenterology. 2020-6

[9]
Anticoagulation in Concomitant Chronic Kidney Disease and Atrial Fibrillation: JACC Review Topic of the Week.

J Am Coll Cardiol. 2019-10-29

[10]
Management of Nonvariceal Upper Gastrointestinal Bleeding: Guideline Recommendations From the International Consensus Group.

Ann Intern Med. 2019-10-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索