Rapp Johann L, Anstine Dylan M, Gusev Filipp, Nikitin Filipp, Yun Kelly H, Borden Meredith A, Bhat Vittal, Isayev Olexandr, Leibfarth Frank A
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA.
Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA.
Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202513147. doi: 10.1002/anie.202513147. Epub 2025 Jul 23.
The development of high-performance elastomers for additive manufacturing requires overcoming complex property trade-offs that challenge conventional material discovery pipelines. Here, a human-in-the-loop reinforcement learning (RL) approach is used to discover polyurethane elastomers that overcome pervasive stress-strain property tradeoffs. Starting with a diverse training set of 92 formulations, a coupled multi-component reward system was identified that guides RL agents toward materials with both high strength and extensibility. Through three rounds of iterative optimization combining RL predictions with human chemical intuition, we identified elastomers with more than double the average toughness compared to the initial training set. The final exploitation round, aided by solubility prescreening, predicted twelve materials exhibiting both high strength (>10 MPa) and high strain at break (>200%). Analysis of the high-performing materials revealed structure-property insights, including the benefits of high molar mass urethane oligomers, a high density of urethane functional groups, and incorporation of rigid low molecular weight diols and unsymmetric diisocyanates. These findings demonstrate that machine-guided, human-augmented design is a powerful strategy for accelerating polymer discovery in applications where data is scarce and expensive to acquire, with broad applicability to multi-objective materials optimization.
用于增材制造的高性能弹性体的开发需要克服复杂的性能权衡,这对传统的材料发现流程构成了挑战。在此,采用了一种人工参与的强化学习(RL)方法来发现能够克服普遍存在的应力-应变性能权衡的聚氨酯弹性体。从92种配方的多样化训练集开始,确定了一种耦合多组分奖励系统,该系统引导RL智能体朝着具有高强度和高延展性的材料发展。通过三轮将RL预测与人类化学直觉相结合的迭代优化,我们确定了与初始训练集相比平均韧性提高了一倍以上的弹性体。在溶解度预筛选的辅助下,最后的开发轮次预测出了12种兼具高强度(>10 MPa)和高断裂应变(>200%)的材料。对高性能材料的分析揭示了结构-性能关系,包括高摩尔质量聚氨酯低聚物的益处、高密度的聚氨酯官能团以及刚性低分子量二醇和不对称二异氰酸酯的引入。这些发现表明,在数据稀缺且获取成本高昂的应用中,机器引导、人工增强的设计是加速聚合物发现的有力策略,对多目标材料优化具有广泛的适用性。