文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

半自动海马回避全脑放射治疗计划

Semi-automated hippocampal avoidance whole-brain radiotherapy planning.

作者信息

Rhee Dong Joo, Perni Subha, Perrin Kelly J, Casey Kevin E, Leone Alexandra O, Nguyen Callistus M, Court Laurence E, Wang He, Wang Xin, Han Eun Young

机构信息

Department of Radiation Physics, The University of Texas MD Anderson, Cancer Center, Houston, Texas, USA.

Department of Central Nervous System Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

出版信息

J Appl Clin Med Phys. 2025 Jul;26(7):e70076. doi: 10.1002/acm2.70076. Epub 2025 Mar 18.


DOI:10.1002/acm2.70076
PMID:40653628
Abstract

BACKGROUND: Hippocampal avoidance whole-brain radiotherapy (HA-WBRT) is designed to spare cognitive function by reducing radiation dose to the hippocampus during the treatment of brain metastases. Current manual planning methods can be time-consuming and may vary in quality, necessitating the development of automated approaches to streamline the process and ensure consistency. PURPOSE: To automate hippocampal avoidance whole-brain radiotherapy (HA-WBRT) planning. METHODS: Our algorithm automatically contours organs-at-risk (OARs) and the hippocampal-avoidance brain target. The algorithm generates planning structures from given contours, utilizing preset beam parameters and dose constraints for optimization. If the dose constraints are unmet, "hotspot" contours will be created to improve dosimetry. The algorithm was written with RayStation's scripting feature and was compared with clinically approved manual HA-WBRT plans for 20 retrospective patients using target and OAR dose metrics, with statistical analysis performed using the Student's t-test. In the qualitative review, an experienced radiation oncologist blindly scored both the manual plans and autoplans for qualitative review. Lastly, IMRT QA was performed to determine the plans' deliverability. RESULTS: The autoplans demonstrated a better target coverage with a more uniform dose. With a prescription dose of 3000 cGy, autoplans achieved higher D (3026 cGy vs. 2998 cGy, p = 0.02) and lower D (3337 cGy vs. 3533 cGy, p < 0.01) for the target. The maximum OAR doses were substantially lower in the eyes of autoplans (1727 cGy vs. 2176 cGy, p < 0.01), while the other OARs had similar maximum doses to those of the manual plans. The autoplans met all of the in-house dose constraints, and the minimum dose to the hippocampus was reduced by 5% compared to the manual plans; the average MU was 1376 ± 329 MU for the manual plans and 1141 ± 64 MU for the autoplans. Autoplan generation took an average of 100.2 ± 16.3 minutes (range 62.9-127.9 min). In the qualitative review, the average scores were 4.9 ± 0.4 for the autoplans and 3.4 ± 1.0 for the manual plans. The gamma criteria results for IMRT QA were 96.4 ± 2.1% for the autoplans and 91.6 ± 5.3% for the manual plans. CONCLUSIONS: Our rule-based autoplanning algorithm produces high-quality plans that are comparable to those of manual planning, demonstrating autoplanning's potential to reduce HA-WBRT planning time while ensuring consistent plan quality.

摘要

背景:海马回避全脑放疗(HA-WBRT)旨在通过在脑转移瘤治疗期间降低海马体的辐射剂量来保留认知功能。当前的手动规划方法可能耗时且质量参差不齐,因此需要开发自动化方法来简化流程并确保一致性。 目的:实现海马回避全脑放疗(HA-WBRT)规划的自动化。 方法:我们的算法自动勾勒出危及器官(OARs)和海马回避脑靶区。该算法根据给定轮廓生成规划结构,利用预设的射束参数和剂量约束进行优化。如果未满足剂量约束,将创建“热点”轮廓以改善剂量测定。该算法使用RayStation的脚本功能编写,并与20例回顾性患者的临床批准的手动HA-WBRT计划进行比较,使用靶区和OAR剂量指标,采用学生t检验进行统计分析。在定性评估中,一位经验丰富的放射肿瘤学家对手动计划和自动计划进行盲法评分以进行定性审查。最后,进行调强放疗质量保证(IMRT QA)以确定计划的可交付性。 结果:自动计划显示出更好的靶区覆盖和更均匀的剂量。处方剂量为3000 cGy时,自动计划在靶区实现了更高的D(3026 cGy对2998 cGy,p = 0.02)和更低的D(3337 cGy对3533 cGy,p < 0.01)。自动计划眼中的最大OAR剂量显著更低(1727 cGy对2176 cGy,p < 0.01),而其他OARs的最大剂量与手动计划相似。自动计划满足了所有内部剂量约束,与手动计划相比,海马体的最小剂量降低了5%;手动计划的平均机器跳数(MU)为1376 ± 329 MU,自动计划为1141 ± 64 MU。自动计划生成平均耗时100.2 ± 16.3分钟(范围62.9 - 127.9分钟)。在定性评估中,自动计划的平均得分为4.9 ± 0.4,手动计划为3.4 ± 1.0。IMRT QA的伽马标准结果自动计划为96.4 ± 2.1%,手动计划为91.6 ± 5.3%。 结论:我们基于规则的自动规划算法生成的高质量计划与手动规划相当,证明了自动规划在减少HA-WBRT规划时间同时确保一致计划质量方面的潜力。

相似文献

[1]
Semi-automated hippocampal avoidance whole-brain radiotherapy planning.

J Appl Clin Med Phys. 2025-7

[2]
Evaluation of the efficacy of automated machine learning enhanced planning system and a comparative analysis with manual planning system.

J Cancer Res Ther. 2025-4-1

[3]
Clinical feasibility of atlas-based auto-segmentation for organ-at-risk contouring in head-and-neck radiotherapy.

J Appl Clin Med Phys. 2025-7

[4]
Implementation of a novel pencil beam scanning Bragg peak FLASH technique to a commercial treatment planning system.

Med Phys. 2025-7

[5]
Whole brain radiotherapy for the treatment of newly diagnosed multiple brain metastases.

Cochrane Database Syst Rev. 2012-4-18

[6]
Early generation dynamic and static proton arc treatment planning algorithms assessment in oropharyngeal cancer patients.

Med Phys. 2025-7

[7]
Potential for reduced radiation-induced toxicity using intensity-modulated arc therapy for whole-brain radiotherapy with hippocampal sparing.

J Appl Clin Med Phys. 2015-9-8

[8]
Treatment planning strategy for whole-brain radiotherapy with hippocampal sparing and simultaneous integrated boost for multiple brain metastases using intensity-modulated arc therapy.

Med Dosim. 2016

[9]
Assessment of intra-fractional and inter-fractional motion in esophageal cancer treated with intensity-modulated proton therapy.

BMC Cancer. 2025-7-1

[10]
Implementation of a knowledge-based decision support system for treatment plan auditing through automation.

Med Phys. 2023-11

本文引用的文献

[1]
SC-GAN: Structure-completion generative adversarial network for synthetic CT generation from MR images with truncated anatomy.

Comput Med Imaging Graph. 2024-4

[2]
Synthetic CT generation from MRI using 3D transformer-based denoising diffusion model.

Med Phys. 2024-4

[3]
Customizable landmark-based field aperture design for automated whole-brain radiotherapy treatment planning.

J Appl Clin Med Phys. 2023-3

[4]
Fully automated planning and delivery of hippocampal-sparing whole brain irradiation.

Med Dosim.

[5]
Clinical implementation of automated treatment planning for whole-brain radiotherapy.

J Appl Clin Med Phys. 2021-9

[6]
Timing of Urgent Inpatient Palliative Radiation Therapy.

Adv Radiat Oncol. 2021-2-11

[7]
Hippocampal Avoidance During Whole-Brain Radiotherapy Plus Memantine for Patients With Brain Metastases: Phase III Trial NRG Oncology CC001.

J Clin Oncol. 2020-4-1

[8]
Automatic detection of contouring errors using convolutional neural networks.

Med Phys. 2019-9-26

[9]
Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218.

Med Phys. 2018-3-23

[10]
Whole-Brain Radiotherapy for Brain Metastases: Evolution or Revolution?

J Clin Oncol. 2017-12-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索