Victor Matheus B, Sun Na, Galani Kyriakitsa, Leary Noelle, Tanigawa Yosuke, Scannail Aine Ni, Ho Li-Lun, Prosper Shaniah, Liu Liwang, Kofler Julia K, Sweet Robert A, Tsai Li-Huei, Kellis Manolis
bioRxiv. 2025 May 7:2025.04.30.651435. doi: 10.1101/2025.04.30.651435.
Approximately 40% of Alzheimer's disease (AD) patients develop psychosis, yet the molecular and cellular processes that govern the manifestation of psychotic symptoms in dementia remain poorly understood. To define the neurobiological correlates that distinguish AD patients with psychosis (AD+P) from AD patients that never exhibited psychotic symptoms (AD-P), we performed single-nucleus transcriptome and epigenome profiling from prefrontal cortex and hippocampus of 48 postmortem brains from AD subjects segmented by psychiatric diagnosis. Our snRNA-seq profiling uncovered differentially expressed genes (DEGs) across multiple cell types, including transcriptional signatures of enhanced synaptic transmission in upper-layer pyramidal neurons of the AD+P cortex. Cell fraction analysis and histology both indicate greater loss of upper-layer pyramidal neurons in AD+P in comparison to AD-P cortex. Integrating our snRNA-seq data with functional screens in stem-cell derived brain organoids, we defined how genetic perturbations modify input-output network connectivity in a model of cortico-cortical communication. We find that differential vulnerability of pyramidal neurons in AD+P is associated with CDK5/p35-associated neurotoxicity and IL6-mediated glial inflammatory expression changes. This neuronal response is associated with microglial exhaustion and astrocytic inflammation signatures triggered by layer-specific neuropathological changes in the brains of AD+P patients. Lastly, we elucidate common and distinct transcriptional signatures between psychosis in AD and several other psychiatric conditions, and found significant enrichment of schizophrenia genetics with AD+P that is most convergent in upper-layer pyramidal neurons. Our work provides novel insight into the pathophysiological role of hyperexcitable circuits in the etiology of neuropsychiatric symptoms of AD.
Cell-type- and brain-region-specific transcriptional changes in AD with psychosis (AD+P)Upper-layer pyramidal dysfunction and metabolic vulnerability marks the pathophysiology of AD+PCircuit wiring programs are evoked in AD+P as maladaptive compensatory responsesAD+P-associated IL-6 signaling impairs neuronal network function in brain organoids.
约40%的阿尔茨海默病(AD)患者会出现精神病症状,但痴呆症中导致精神病症状表现的分子和细胞过程仍知之甚少。为了确定区分患有精神病的AD患者(AD+P)和从未表现出精神病症状的AD患者(AD-P)的神经生物学相关性,我们对48例经精神病学诊断分类的AD受试者的前额叶皮质和海马体进行了单细胞核转录组和表观基因组分析。我们的单细胞核RNA测序(snRNA-seq)分析揭示了多种细胞类型中差异表达的基因(DEGs),包括AD+P皮质上层锥体神经元中增强的突触传递的转录特征。细胞组分分析和组织学均表明,与AD-P皮质相比,AD+P中上层锥体神经元的损失更大。将我们的snRNA-seq数据与干细胞衍生脑类器官中的功能筛选相结合,我们确定了基因扰动如何在皮质-皮质通信模型中改变输入-输出网络连接性。我们发现,AD+P中锥体神经元的不同易损性与CDK5/p35相关的神经毒性和IL6介导的胶质细胞炎症表达变化有关。这种神经元反应与AD+P患者大脑中由层特异性神经病理变化引发的小胶质细胞耗竭和星形胶质细胞炎症特征有关。最后,我们阐明了AD中的精神病与其他几种精神疾病之间的共同和不同转录特征,并发现AD+P中精神分裂症遗传学的显著富集,这在最上层锥体神经元中最为一致。我们的工作为过度兴奋回路在AD神经精神症状病因学中的病理生理作用提供了新的见解。
患有精神病的AD(AD+P)中细胞类型和脑区特异性转录变化
上层锥体功能障碍和代谢易损性标志着AD+P的病理生理学
AD+P中诱发的电路布线程序是适应不良的补偿反应
AD+P相关的IL-6信号传导损害脑类器官中的神经元网络功能