Bimbo Jaime Fernández, van Diest Eline, Murphy Daniel E, Ashoti Ator, Evers Martijn J W, Narayanavari Suneel A, Vaz Diana Pereira, Rijssemus Hanneke, Zotou Christina, Saber Nadine, Lei Zhiyong, Mayrhofer Peter, Geerlings Maurits, Schiffelers Raymond, Lubelski Jacek
R&D, NanoCell Therapeutics BV, Utrecht, Utrecht, Netherlands.
Central Diagnostisch Laboratorium, University Medical Centre Utrecht, Utrecht, Utrecht, Netherlands.
J Immunother Cancer. 2025 Jul 13;13(7):e011759. doi: 10.1136/jitc-2025-011759.
BACKGROUND: Ex vivo chimeric antigen receptor (CAR)-T therapies have revolutionized cancer treatment. However, treatment accessibility is hindered by high costs, long manufacturing times, and the need for specialized centers and inpatient care. Strategies to generate CAR-T cells in vivo have emerged as a promising alternative that could bypass CAR-T manufacturing bottlenecks. Most current in vivo CAR-T approaches, while demonstrating encouraging preclinical efficacy, rely on transient messenger RNA (mRNA) delivery or viral vectors which both have limitations in terms of efficiency, durability, and scalability. To address these challenges, we developed a novel DNA-based targeted lipid nanoparticle (LNP) which we termed NCtx. METHODS: Minicircle DNA (mcDNA) encoding a CAR construct and SB100x transposase mRNA were encapsulated within a novel lipid formulation which was functionalized with T cell-specific anti-CD7 and anti-CD3 binders. In vitro, we evaluated T cell specificity, mcDNA and mRNA transfection efficiency, transposon-mediated CAR integration and functionality of the resulting CAR-T cells. In vivo efficacy was assessed in peripheral blood mononuclear cell and CD34 stem cell humanized murine xenograft models of B cell leukemia. RESULTS: In vitro, NCtx displayed high specificity and transfection efficiency with both mcDNA and mRNA in primary T cells. Transposase mRNA facilitated genomic integration of the CAR gene, leading to the generation of stable CAR-T cells that exhibited antigen-specific cytotoxicity and cytokine release. In vivo, a single intravenous dose of NCtx induced robust CAR-T cell generation resulting in effective tumor control and significantly improved survival in two distinct xenograft models. CONCLUSIONS: Our findings demonstrate for the first time that targeted LNPs can be employed for efficient DNA delivery to T cells in vitro and in vivo. We show that when combined with transposase technology, this LNP-based system can efficiently generate stable CAR-T cells directly in vivo, inducing potent and durable antitumor responses. NCtx represents a novel non-viral gene therapy vector for in vivo CAR-T therapy, offering a scalable and potentially more accessible alternative to traditional approaches in CAR-T cell generation.
背景:离体嵌合抗原受体(CAR)-T疗法彻底改变了癌症治疗方式。然而,高昂的成本、漫长的生产时间以及对专业中心和住院护理的需求阻碍了治疗的可及性。体内生成CAR-T细胞的策略已成为一种有前景的替代方案,有望绕过CAR-T生产瓶颈。当前大多数体内CAR-T方法虽然在临床前疗效方面令人鼓舞,但依赖于瞬时信使核糖核酸(mRNA)递送或病毒载体,这两者在效率、持久性和可扩展性方面都存在局限性。为应对这些挑战,我们开发了一种新型的基于DNA的靶向脂质纳米颗粒(LNP),我们将其命名为NCtx。 方法:将编码CAR构建体的微小环状DNA(mcDNA)和SB100x转座酶mRNA封装在一种新型脂质制剂中,该制剂用T细胞特异性抗CD7和抗CD3结合剂进行功能化修饰。在体外,我们评估了T细胞特异性、mcDNA和mRNA转染效率、转座子介导的CAR整合以及所得CAR-T细胞的功能。在B细胞白血病的外周血单核细胞和CD34干细胞人源化小鼠异种移植模型中评估体内疗效。 结果:在体外,NCtx在原代T细胞中对mcDNA和mRNA均显示出高特异性和转染效率。转座酶mRNA促进了CAR基因的基因组整合,导致产生稳定的CAR-T细胞,这些细胞表现出抗原特异性细胞毒性和细胞因子释放。在体内,单次静脉注射NCtx可诱导强大的CAR-T细胞生成,从而有效控制肿瘤并显著提高两种不同异种移植模型的生存率。 结论:我们的研究结果首次证明,靶向LNP可用于在体外和体内将DNA高效递送至T细胞。我们表明,当与转座酶技术结合时,这种基于LNP的系统可在体内直接高效生成稳定的CAR-T细胞,诱导强大而持久的抗肿瘤反应。NCtx代表了一种用于体内CAR-T治疗的新型非病毒基因治疗载体,为CAR-T细胞生成中的传统方法提供了一种可扩展且可能更易获得的替代方案。
J Immunother Cancer. 2025-7-13
Balkan Med J. 2025-7-1
Cochrane Database Syst Rev. 2021-9-13
Proc Natl Acad Sci U S A. 2025-7-22
Cochrane Database Syst Rev. 2018-2-6
J Hematol Oncol. 2025-3-1
Blood Cancer J. 2024-12-3
Nat Rev Drug Discov. 2024-10
Fundam Res. 2022-10-3
J Nanobiotechnology. 2023-8-17