文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用靶向脂质纳米颗粒进行T细胞特异性非病毒DNA递送及体内CAR-T细胞生成

T cell-specific non-viral DNA delivery and in vivo CAR-T generation using targeted lipid nanoparticles.

作者信息

Bimbo Jaime Fernández, van Diest Eline, Murphy Daniel E, Ashoti Ator, Evers Martijn J W, Narayanavari Suneel A, Vaz Diana Pereira, Rijssemus Hanneke, Zotou Christina, Saber Nadine, Lei Zhiyong, Mayrhofer Peter, Geerlings Maurits, Schiffelers Raymond, Lubelski Jacek

机构信息

R&D, NanoCell Therapeutics BV, Utrecht, Utrecht, Netherlands.

Central Diagnostisch Laboratorium, University Medical Centre Utrecht, Utrecht, Utrecht, Netherlands.

出版信息

J Immunother Cancer. 2025 Jul 13;13(7):e011759. doi: 10.1136/jitc-2025-011759.


DOI:10.1136/jitc-2025-011759
PMID:40659448
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12258353/
Abstract

BACKGROUND: Ex vivo chimeric antigen receptor (CAR)-T therapies have revolutionized cancer treatment. However, treatment accessibility is hindered by high costs, long manufacturing times, and the need for specialized centers and inpatient care. Strategies to generate CAR-T cells in vivo have emerged as a promising alternative that could bypass CAR-T manufacturing bottlenecks. Most current in vivo CAR-T approaches, while demonstrating encouraging preclinical efficacy, rely on transient messenger RNA (mRNA) delivery or viral vectors which both have limitations in terms of efficiency, durability, and scalability. To address these challenges, we developed a novel DNA-based targeted lipid nanoparticle (LNP) which we termed NCtx. METHODS: Minicircle DNA (mcDNA) encoding a CAR construct and SB100x transposase mRNA were encapsulated within a novel lipid formulation which was functionalized with T cell-specific anti-CD7 and anti-CD3 binders. In vitro, we evaluated T cell specificity, mcDNA and mRNA transfection efficiency, transposon-mediated CAR integration and functionality of the resulting CAR-T cells. In vivo efficacy was assessed in peripheral blood mononuclear cell and CD34 stem cell humanized murine xenograft models of B cell leukemia. RESULTS: In vitro, NCtx displayed high specificity and transfection efficiency with both mcDNA and mRNA in primary T cells. Transposase mRNA facilitated genomic integration of the CAR gene, leading to the generation of stable CAR-T cells that exhibited antigen-specific cytotoxicity and cytokine release. In vivo, a single intravenous dose of NCtx induced robust CAR-T cell generation resulting in effective tumor control and significantly improved survival in two distinct xenograft models. CONCLUSIONS: Our findings demonstrate for the first time that targeted LNPs can be employed for efficient DNA delivery to T cells in vitro and in vivo. We show that when combined with transposase technology, this LNP-based system can efficiently generate stable CAR-T cells directly in vivo, inducing potent and durable antitumor responses. NCtx represents a novel non-viral gene therapy vector for in vivo CAR-T therapy, offering a scalable and potentially more accessible alternative to traditional approaches in CAR-T cell generation.

摘要

背景:离体嵌合抗原受体(CAR)-T疗法彻底改变了癌症治疗方式。然而,高昂的成本、漫长的生产时间以及对专业中心和住院护理的需求阻碍了治疗的可及性。体内生成CAR-T细胞的策略已成为一种有前景的替代方案,有望绕过CAR-T生产瓶颈。当前大多数体内CAR-T方法虽然在临床前疗效方面令人鼓舞,但依赖于瞬时信使核糖核酸(mRNA)递送或病毒载体,这两者在效率、持久性和可扩展性方面都存在局限性。为应对这些挑战,我们开发了一种新型的基于DNA的靶向脂质纳米颗粒(LNP),我们将其命名为NCtx。 方法:将编码CAR构建体的微小环状DNA(mcDNA)和SB100x转座酶mRNA封装在一种新型脂质制剂中,该制剂用T细胞特异性抗CD7和抗CD3结合剂进行功能化修饰。在体外,我们评估了T细胞特异性、mcDNA和mRNA转染效率、转座子介导的CAR整合以及所得CAR-T细胞的功能。在B细胞白血病的外周血单核细胞和CD34干细胞人源化小鼠异种移植模型中评估体内疗效。 结果:在体外,NCtx在原代T细胞中对mcDNA和mRNA均显示出高特异性和转染效率。转座酶mRNA促进了CAR基因的基因组整合,导致产生稳定的CAR-T细胞,这些细胞表现出抗原特异性细胞毒性和细胞因子释放。在体内,单次静脉注射NCtx可诱导强大的CAR-T细胞生成,从而有效控制肿瘤并显著提高两种不同异种移植模型的生存率。 结论:我们的研究结果首次证明,靶向LNP可用于在体外和体内将DNA高效递送至T细胞。我们表明,当与转座酶技术结合时,这种基于LNP的系统可在体内直接高效生成稳定的CAR-T细胞,诱导强大而持久的抗肿瘤反应。NCtx代表了一种用于体内CAR-T治疗的新型非病毒基因治疗载体,为CAR-T细胞生成中的传统方法提供了一种可扩展且可能更易获得的替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af88/12258353/ac751407307f/jitc-13-7-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af88/12258353/0aa53416c20c/jitc-13-7-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af88/12258353/c5a9918d82ef/jitc-13-7-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af88/12258353/9864bcca3601/jitc-13-7-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af88/12258353/ac751407307f/jitc-13-7-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af88/12258353/0aa53416c20c/jitc-13-7-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af88/12258353/c5a9918d82ef/jitc-13-7-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af88/12258353/9864bcca3601/jitc-13-7-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af88/12258353/ac751407307f/jitc-13-7-g004.jpg

相似文献

[1]
T cell-specific non-viral DNA delivery and in vivo CAR-T generation using targeted lipid nanoparticles.

J Immunother Cancer. 2025-7-13

[2]
CAR-T Cells Therapy in Glioblastoma: A Systematic Review on Molecular Targets and Treatment Strategies.

Int J Mol Sci. 2024-6-29

[3]
Current Anti-Myeloma Chimeric Antigen Receptor-T Cells: Novel Targets and Methods.

Balkan Med J. 2025-7-1

[4]
Chimeric antigen receptor (CAR) T-cell therapy for people with relapsed or refractory diffuse large B-cell lymphoma.

Cochrane Database Syst Rev. 2021-9-13

[5]
JAK-STAT-activated, fratricide-resistant CAR-T cells targeting membrane-bound TNF effectively treat AML and solid tumors.

J Immunother Cancer. 2025-7-13

[6]
In vivo generation of CAR macrophages via the enucleated mesenchymal stem cell delivery system for glioblastoma therapy.

Proc Natl Acad Sci U S A. 2025-7-22

[7]
Bio-functional hydrogel coated membranes to decrease T-cell exhaustion in manufacturing of CAR T-cells.

Front Immunol. 2025-6-27

[8]
Transduction of γδ T cells with Baboon envelope pseudotyped lentiviral vector encoding chimeric antigen receptors for translational and clinical applications.

Front Immunol. 2025-6-6

[9]
ADI-270: an armored allogeneic gamma delta T cell therapy designed to target CD70-expressing solid and hematologic malignancies.

J Immunother Cancer. 2025-7-1

[10]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

本文引用的文献

[1]
CAR-NK cell therapy: latest updates from the 2024 ASH annual meeting.

J Hematol Oncol. 2025-3-1

[2]
Impact of T cell characteristics on CAR-T cell therapy in hematological malignancies.

Blood Cancer J. 2024-12-3

[3]
In vivo CAR T cells move into clinical trials.

Nat Rev Drug Discov. 2024-10

[4]
The Current Landscape of Secondary Malignancies after CAR T-Cell Therapies: How Could Malignancies Be Prevented?

Int J Mol Sci. 2024-9-1

[5]
Improved therapeutic efficacy in two mouse models of methylmalonic acidemia (MMA) using a second-generation mRNA therapy.

Mol Genet Metab. 2024

[6]
Characterization of lipid-based nanomedicines at the single-particle level.

Fundam Res. 2022-10-3

[7]
In vivo CAR T-cell generation in nonhuman primates using lentiviral vectors displaying a multidomain fusion ligand.

Blood. 2024-8-29

[8]
Chimeric Antigen Receptor T-Cell Access in Patients with Relapsed/Refractory Large B-Cell Lymphoma: Association of Access with Social Determinants of Health and Travel Time to Treatment Centers.

Transplant Cell Ther. 2024-7

[9]
In Vivo mRNA CAR T Cell Engineering via Targeted Ionizable Lipid Nanoparticles with Extrahepatic Tropism.

Small. 2024-3

[10]
Emerging non-viral vectors for gene delivery.

J Nanobiotechnology. 2023-8-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索