幽门螺杆菌人工智能临床助手利用人工智能对幽门螺杆菌治疗建议进行个性化定制。
The Helicobacter pylori AI-clinician harnesses artificial intelligence to personalise H. pylori treatment recommendations.
作者信息
Higgins Kyle, Nyssen Olga P, Southern Joshua, Laponogov Ivan, Veselkov Dennis, Gisbert Javier P, Kanonnikoff Tania Fleitas, Veselkov Kirill
机构信息
Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
Gastroenterology Unit, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-Princesa), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
出版信息
Nat Commun. 2025 Jul 14;16(1):6472. doi: 10.1038/s41467-025-61329-5.
Helicobacter pylori (H. pylori) is the most common carcinogenic pathogen globally and the leading cause of gastric cancer. Here, we develop a reinforcement learning-based AI Clinician system to personalise treatment selection and evaluate its ability to improve eradication success compared to clinician-prescribed therapies. The model is trained and internally validated on 38,049 patients from the retrospective European Registry on Helicobacter pylori Management (Hp-EuReg), using independent state deep Q-learning (isDQN) to recommend optimal therapies based on patient characteristics such as age, sex, antibiotic allergies, country, and pre-treatment indication. In internal validation using real-world Hp-EuReg data, AI-recommended therapies achieve a 94.1% success rate (95% CI: 93.2-95.0%) versus 88.1% (95% CI: 87.7-88.4%) for clinician-prescribed therapies not aligned with AI suggestions-an improvement of 6.0%. Results are replicated in an external validation cohort (n = 7186), confirming generalisability. The AI system identifies optimal treatment strategies in key subgroups: 65% (n = 24,923) are recommended bismuth-based therapies, and 15% (n = 5898) non-bismuth quadruple therapies. Random forest modelling identifies region and concurrent medications as patient-specific drivers of AI recommendations. With nearly half the global population likely to contract H. pylori, this approach lays the foundation for future prospective clinical validation and shows the potential of AI to support clinical decision-making, enhance outcomes, and reduce gastric cancer burden.
幽门螺杆菌(H. pylori)是全球最常见的致癌病原体,也是胃癌的主要病因。在此,我们开发了一种基于强化学习的人工智能临床医生系统,以实现个性化治疗选择,并评估其与临床医生规定的疗法相比提高根除成功率的能力。该模型在来自回顾性欧洲幽门螺杆菌管理登记处(Hp-EuReg)的38049名患者身上进行训练和内部验证,使用独立状态深度Q学习(isDQN)根据患者特征(如年龄、性别、抗生素过敏、国家和治疗前指征)推荐最佳疗法。在使用真实世界Hp-EuReg数据的内部验证中,人工智能推荐的疗法成功率为94.1%(95%置信区间:93.2-95.0%),而与人工智能建议不一致的临床医生规定的疗法成功率为88.1%(95%置信区间:87.7-88.4%)——提高了6.0%。结果在外部验证队列(n = 7186)中得到重复,证实了其可推广性。人工智能系统在关键亚组中识别出最佳治疗策略:65%(n = 24923)被推荐使用基于铋的疗法,15%(n = 5898)被推荐使用非铋四联疗法。随机森林建模将地区和同时使用的药物确定为人工智能推荐的患者特异性驱动因素。由于全球近一半人口可能感染幽门螺杆菌,这种方法为未来的前瞻性临床验证奠定了基础,并显示了人工智能支持临床决策、改善治疗结果和减轻胃癌负担的潜力。