Shi Hui-Xian, Qu Xuan, Zhao Tong-Tong, An Zhong-Fu, Zhang Chuan-Yi, Wang Hong-Liang
Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
J Nanobiotechnology. 2025 Jul 15;23(1):513. doi: 10.1186/s12951-025-03497-6.
UNLABELLED: Photothermal therapy (PTT), a rapidly advancing non-invasive cancer treatment modality, utilizes photothermal agents to convert light energy into thermal energy, enabling precise and localized destruction of cancer cells. Recent developments have focused on photothermal agents operating in the second near-infrared (NIR-II) biological window (1000–1350 nm), which offer enhanced tissue penetration depth and improved therapeutic precision for deep-seated tumors while minimizing collateral damage to healthy tissues. In this study, we developed a novel class of nitrogen-doped carbon dots (N-CDs) through a facile one-pot hydrothermal synthesis approach. The synthesized N-CDs demonstrate remarkable dual functionality, exhibiting both superior photothermal performance and fluorescence imaging capabilities within the NIR region, thereby enabling simultaneous tumor diagnosis and therapy. These N-CDs display exceptional biocompatibility and achieve impressive photothermal conversion efficiencies of 31.25% and 27.12% under 808 nm and 1060 nm laser irradiation, respectively, with corresponding temperature changes of 42.8 ℃ and 39.7 ℃ in vitro. Notably, the N-CDs exhibit a strong fluorescence emission peak at 660 nm, approaching the NIR-I window, which facilitates high-contrast bioimaging. In vivo studies confirmed the therapeutic efficacy of N-CDs, demonstrating cancer cell ablation under both 808 nm and 1060 nm laser irradiation, coupled with accurate tumor localization capabilities. The unique combination of intense fluorescence emission, exceptional photothermal conversion efficiency, and outstanding biocompatibility positions these N-CDs as a highly promising theranostic platform for integrated cancer diagnosis and treatment. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-025-03497-6.
未标记:光热疗法(PTT)是一种快速发展的非侵入性癌症治疗方式,它利用光热剂将光能转化为热能,从而实现对癌细胞的精确局部破坏。最近的进展集中在工作于第二近红外(NIR-II)生物窗口(1000 - 1350纳米)的光热剂上,这种光热剂能提供更深的组织穿透深度,并提高对深部肿瘤的治疗精度,同时将对健康组织的附带损伤降至最低。在本研究中,我们通过一种简便的一锅水热合成方法开发了一类新型的氮掺杂碳点(N-CDs)。合成的N-CDs展现出卓越的双重功能,在近红外区域内既具有优异的光热性能又具备荧光成像能力,从而能够实现肿瘤的同步诊断和治疗。这些N-CDs表现出出色的生物相容性,在808纳米和1060纳米激光照射下,光热转换效率分别达到31.25%和27.12%,在体外相应的温度变化分别为42.8℃和39.7℃。值得注意的是,N-CDs在660纳米处呈现出强烈的荧光发射峰,接近近红外-I窗口,这有利于进行高对比度生物成像。体内研究证实了N-CDs的治疗效果,显示在808纳米和1060纳米激光照射下均能实现癌细胞消融,同时具备精确的肿瘤定位能力。强烈的荧光发射、卓越的光热转换效率和出色的生物相容性的独特组合,使这些N-CDs成为用于综合癌症诊断和治疗的极具前景的诊疗平台。 补充信息:在线版本包含可在10.1186/s12951-025-03497-6获取的补充材料。
J Nanobiotechnology. 2025-7-15
J Nanobiotechnology. 2025-8-29
J Colloid Interface Sci. 2022-6-15
Small. 2022-12
Adv Healthc Mater. 2023-6
ACS Appl Mater Interfaces. 2021-11-17