Suppr超能文献

使用不同刷毛类型和牙膏配方模拟刷牙后,增材制造和减材制造的树脂复合材料及氧化锆的表面光泽度和显微CT分析:一项体外研究

Surface gloss and micro-CT analysis of additively and subtractively manufactured resin composites and zirconia after simulated tooth brushing with different bristle types and toothpaste formulations: An in vitro study.

作者信息

Ertürk Ahmet Faruk, Sasany Rafat, Mosaddad Seyed Ali, Kendirci Merve Yelken

机构信息

Department of Oral and Maxillofacial Radiology, Faculty of Dentistry, Biruni University, Istanbul, Turkey.

Department of Prosthodontics, Faculty of Dentistry, Biruni University, Istanbul, Turkey.

出版信息

J Prosthodont. 2025 Jul 14. doi: 10.1111/jopr.14099.

Abstract

PURPOSE

This study aimed to evaluate the effects of simulated tooth brushing with different bristle types and two toothpaste formulations on the surface gloss and structural integrity of additively (AM) and subtractively (SM) manufactured resin composites and zirconia.

MATERIALS AND METHODS

A total of 160 specimens were prepared from four material groups: AM resin composite (AM-RC), AM zirconia (AM-Z), SM resin composite (SM-RC), and SM zirconia (SM-Z). Each specimen was assigned to one of four subgroups based on toothbrush bristle type and toothpaste formulation. Following polishing, the initial surface gloss was measured using a glossmeter. Specimens then underwent simulated tooth brushing (10,000 cycles) using a brushing simulator equipped with two toothbrush types and two toothpaste formulations. Surface gloss was re-evaluated post-brushing, and structural changes were analyzed using synchrotron radiation μ-CT at a voxel size of 0.65 µm. Data were statistically analyzed using analysis of variance (ANOVA) with α = 0.05.

RESULTS

Three-way ANOVA revealed a significant impact of all tested factors on surface gloss (p < 0.05). Before polishing, AM-Z and AM-RC exhibited higher gloss than SM-Z and SM-RC (p < 0.05). After polishing, AM-Z showed the greatest gloss enhancement. One-way ANOVA indicated that toothbrush bristle shape and toothpaste composition significantly influenced gloss reduction (p < 0.05), with round-end bristles and whitening toothpaste causing the highest gloss loss. Among materials, AM-Z exhibited the least gloss reduction (10.29 GU).

CONCLUSIONS

Surface gloss retention is influenced by material type, toothbrush bristle shape, and toothpaste formulation. AM materials demonstrated superior resistance to gloss loss, while whitening toothpaste contributed to greater gloss reduction.

摘要

目的

本研究旨在评估使用不同刷毛类型的模拟刷牙以及两种牙膏配方对增材制造(AM)和减材制造(SM)的树脂复合材料及氧化锆表面光泽度和结构完整性的影响。

材料与方法

从四个材料组制备了总共160个试样:AM树脂复合材料(AM-RC)、AM氧化锆(AM-Z)、SM树脂复合材料(SM-RC)和SM氧化锆(SM-Z)。根据牙刷刷毛类型和牙膏配方,将每个试样分配到四个亚组之一。抛光后,使用光泽仪测量初始表面光泽度。然后,使用配备两种牙刷类型和两种牙膏配方的刷牙模拟器对试样进行模拟刷牙(10,000次循环)。刷牙后重新评估表面光泽度,并使用体素大小为0.65 µm的同步辐射μ-CT分析结构变化。使用方差分析(ANOVA)对数据进行统计分析,α = 0.05。

结果

三因素方差分析显示,所有测试因素对表面光泽度均有显著影响(p < 0.05)。抛光前,AM-Z和AM-RC的光泽度高于SM-Z和SM-RC(p < 0.05)。抛光后,AM-Z的光泽度增强最大。单因素方差分析表明,牙刷刷毛形状和牙膏成分对光泽度降低有显著影响(p < 0.05),圆头刷毛和美白牙膏导致的光泽度损失最高。在材料中,AM-Z的光泽度降低最少(10.29 GU)。

结论

表面光泽度的保持受材料类型、牙刷刷毛形状和牙膏配方的影响。AM材料表现出卓越的抗光泽度损失能力,而美白牙膏导致更大的光泽度降低。

相似文献

4
Shear bond strength of resin cement to additively manufactured zirconia with customized surface texture and porosity: Part 1.
J Prosthet Dent. 2025 Jul;134(1):227.e1-227.e8. doi: 10.1016/j.prosdent.2025.03.012. Epub 2025 Apr 1.
5
Topical fluoride as a cause of dental fluorosis in children.
Cochrane Database Syst Rev. 2024 Jun 20;6(6):CD007693. doi: 10.1002/14651858.CD007693.pub3.
7
Charcoal whitening agents and composite resin: investigating color change and surface roughness.
BMC Oral Health. 2025 Jul 2;25(1):1005. doi: 10.1186/s12903-025-06373-9.
9
The effects of a carbonated beverage on the optical properties and microhardness of preheated bulk-fill composite resin restorations.
Front Oral Health. 2025 Jun 2;6:1539527. doi: 10.3389/froh.2025.1539527. eCollection 2025.
10
The Gloss Retention of Esthetic Restorations Following Simulated Brushing with Charcoal Oral Products: An Study.
J Contemp Dent Pract. 2024 May 1;25(5):473-479. doi: 10.5005/jp-journals-10024-3692.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验