Wagner-Carena J, Kate S, Riordan T, Abbasi-Asl R, Aman J, Amster A, Bodor A L, Brittain D, Buchanan J A, Buice M A, Bumbarger D J, Collman F, da Costa N M, Denman D J, de Vries Sej, Joyce E, Kapner D, King C W, Larkin J D, Lecoq J, Mahalingam G, Millman D, Mölter J, Morrison C, Reid R C, Schneider-Mizell C M, Daniel S, Suckow S, Takasaki K T, Takeno M, Torres R, Vumbaco D, Waters J, Wyrick D G, Yin W, Zhuang J, Mihalas S, Berteau S
Allen Institute, Seattle, WA, USA.
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
bioRxiv. 2025 May 23:2025.04.24.649900. doi: 10.1101/2025.04.24.649900.
In 1949, Donald Hebb proposed that groups of neurons that activate stereotypically form the organizational building blocks of perception, cognition, and behavior. Finding the structural underpinning of such assemblies has been technically challenging, due to a lack of large-scale structure-activity maps. Here, we analyze this relation using a novel dataset that links in vivo optical physiology to connectivity using postmortem electron microscopy (EM). From the fluorescence traces, we extract neural assemblies from higher-order correlations in neural activity. Physiologically, we show that these assemblies exhibit properties consistent with Hebb's theory, including more reliable responses to repeated natural movie inputs than size-matched random ensembles and superior decoding of visual stimuli. Structurally, we find that neurons that participate in assemblies are significantly more integrated into the structural network than those that do not. Contrary to Hebb's original prediction, we do not observe a marked increase in the strength of monosynaptic excitatory connections between cells participating in the same assembly. However, we find significantly stronger indirect feed-forward inhibitory connections targeting cells in other assemblies. These results show that assemblies can be useful components of perception, and, surprisingly, they are delineated by mutual inhibition.
1949年,唐纳德·赫布提出,刻板地激活的神经元群构成了感知、认知和行为的组织基石。由于缺乏大规模的结构-活动图谱,找到此类神经集合的结构基础在技术上具有挑战性。在这里,我们使用一个将体内光学生理学与死后电子显微镜(EM)的连接性相联系的新数据集来分析这种关系。从荧光迹线中,我们从神经活动的高阶相关性中提取神经集合。在生理学上,我们表明这些集合表现出与赫布理论一致的特性,包括对重复的自然电影输入的反应比大小匹配的随机集合更可靠,以及对视觉刺激的解码能力更强。在结构上,我们发现参与集合的神经元比未参与的神经元更显著地融入结构网络。与赫布最初的预测相反,我们没有观察到参与同一集合的细胞之间单突触兴奋性连接强度的显著增加。然而,我们发现针对其他集合中的细胞的间接前馈抑制连接明显更强。这些结果表明,神经集合可以是感知的有用组成部分,而且令人惊讶的是,它们是由相互抑制来界定的。