Binter Jan, Macek Martin, Dolezal Jiri
Institute of Botany of the Czech Academy of Sciences, Průhonice, 252 43, Czech Republic.
Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, 128 43, Czech Republic.
J Integr Plant Biol. 2025 Jul 15. doi: 10.1111/jipb.13971.
Understanding plant adaptive strategies that determine species distributions and ecological optima is crucial for predicting responses to global change drivers. While functional traits provide mechanistic insights into distribution patterns, the specific trait syndromes that best predict elevational optima, particularly in less-studied regions such as the Himalayas, remain unclear. This study employs a novel hierarchical framework integrating morphological, anatomical, and physiological traits to explain elevational distributions among 310 plant species across a 3,500-m gradient (2,650-6,150 m). We analyzed 95,000 floristic records collected from 4,062 localities spanning 80,000 km in Ladakh, NW Himalayas, India, to define elevational optima and link them with 17 functional traits from over 7,800 individuals. We assessed the roles of moisture and cold limitations on trait-optima relationships by comparing two contrasting habitats (dry steppe and wetter, colder alpine). The predictive power of functional traits was more pronounced in the alpine species facing more extreme abiotic stress than the steppe species. Our results indicate that conservative life history strategies strongly predict elevational optima in alpine areas, while drought avoidance and competitive dominance are key in steppe habitats. Trait syndromes combining short stature, compact growth forms, enhanced storage tissues, and features promoting water-use efficiency (δC), freezing resistance (fructan levels), and nutrient retention (high root nitrogen and leaf phosphorus) explained 61% of the variation in alpine species' optima. Conversely, lifespan and clonal propagation determined the optima of steppe species at lower elevations. The study emphasizes the importance of functional trait combinations in determining elevational optima, highlighting that alpine species prioritize resource conservation and stress tolerance, while steppe species focus on competitive growth strategies. This multi-trait approach contrasts with previous research focusing on single trait-elevation relationships, providing novel insights into the diverse mechanisms shaping elevational distributions and offering valuable predictive power for assessing vegetation responses to future climate change.
了解决定物种分布和生态最适值的植物适应策略对于预测对全球变化驱动因素的响应至关重要。虽然功能性状为分布模式提供了机制性见解,但最能预测海拔最适值的特定性状组合,尤其是在喜马拉雅山等研究较少的地区,仍不明确。本研究采用了一个新颖的层次框架,整合形态、解剖和生理性状,以解释310种植物在3500米梯度(2650 - 6150米)上的海拔分布。我们分析了从印度喜马拉雅西北部拉达克地区4062个地点收集的95000条植物区系记录,这些地点跨越80000公里,以确定海拔最适值,并将其与7800多个个体的17个功能性状联系起来。我们通过比较两个对比鲜明的栖息地(干旱草原和更湿润、更寒冷的高山),评估了水分和寒冷限制对性状 - 最适值关系的作用。与草原物种相比,功能性状的预测能力在面临更极端非生物胁迫的高山物种中更为明显。我们的结果表明,保守的生活史策略强烈预测高山地区的海拔最适值,而避旱和竞争优势在草原栖息地中至关重要。结合矮小 stature、紧凑生长形式、增强的储存组织以及促进水分利用效率(δC)、抗冻性(果聚糖水平)和养分保留(高根氮和叶磷)的特征的性状组合解释了高山物种最适值变异的61%。相反,寿命和克隆繁殖决定了低海拔草原物种的最适值。该研究强调了功能性状组合在确定海拔最适值中的重要性,突出表明高山物种优先考虑资源保护和胁迫耐受性,而草原物种则侧重于竞争生长策略。这种多性状方法与以往侧重于单个性状 - 海拔关系的研究形成对比,为塑造海拔分布的多样机制提供了新见解,并为评估植被对未来气候变化的响应提供了有价值的预测能力。