Suppr超能文献

通过实时人工智能反馈提高乳房定位质量。

Enhancing breast positioning quality through real-time AI feedback.

作者信息

Sexauer Raphael, Riehle Friederike, Borkowski Karol, Ruppert Carlotta, Potthast Silke, Schmidt Noemi

机构信息

Department of Radiology and Nuclear Medicine, Kantonsspital Baselland, Liestal, Switzerland.

Department of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland.

出版信息

Eur Radiol. 2025 Jul 15. doi: 10.1007/s00330-025-11812-w.

Abstract

OBJECTIVES

Enhance mammography quality to increase cancer detection by implementing continuous AI-driven feedback mechanisms, ensuring reliable, consistent, and high-quality screening by the 'Perfect', 'Good', 'Moderate', and 'Inadequate' (PGMI) criteria.

MATERIALS AND METHODS

To assess the impact of the AI software 'b-box' on mammography quality, we conducted a comparative analysis of PGMI scores. We evaluated scores 50 days before (A) and after the software's implementation in 2021 (B), along with assessments made in the first week of August 2022 (C1) and 2023 (C2), comparing them to evaluations conducted by two readers. Except for postsurgical patients, we included all diagnostic and screening mammograms from one tertiary hospital.

RESULTS

A total of 4577 mammograms from 1220 women (mean age: 59, range: 21-94, standard deviation: 11.18) were included. 1728 images were obtained before (A) and 2330 images after the 2021 software implementation (B), along with 269 images in 2022 (C1) and 250 images in 2023 (C2). The results indicated a significant improvement in diagnostic image quality (p < 0.01). The percentage of 'Perfect' examinations rose from 22.34% to 32.27%, while 'Inadequate' images decreased from 13.31% to 5.41% in 2021, continuing the positive trend with 4.46% and 3.20% 'inadequate' images in 2022 and 2023, respectively (p < 0.01).

CONCLUSION

Using a reliable software platform to perform AI-driven quality evaluation in real-time has the potential to make lasting improvements in image quality, support radiographers' professional growth, and elevate institutional quality standards and documentation simultaneously.

KEY POINTS

Question How can AI-powered quality assessment reduce inadequate mammographic quality, which is known to impact sensitivity and increase the risk of interval cancers? Findings AI implementation decreased 'inadequate' mammograms from 13.31% to 3.20% and substantially improved parenchyma visualization, with consistent subgroup trends. Clinical relevance By reducing 'inadequate' mammograms and enhancing imaging quality, AI-driven tools improve diagnostic reliability and support better outcomes in breast cancer screening.

摘要

目的

通过实施持续的人工智能驱动反馈机制提高乳腺钼靶摄影质量,以增加癌症检测率,通过“完美”“良好”“中等”和“不足”(PGMI)标准确保可靠、一致且高质量的筛查。

材料与方法

为评估人工智能软件“b-box”对乳腺钼靶摄影质量的影响,我们对PGMI评分进行了对比分析。我们评估了2021年软件实施前50天(A)和实施后(B)的评分,以及2022年8月第一周(C1)和2023年(C2)的评估结果,并将其与两位阅片者的评估结果进行比较。除了术后患者,我们纳入了一家三级医院的所有诊断性和筛查性乳腺钼靶片。

结果

共纳入了1220名女性的4577张乳腺钼靶片(平均年龄:59岁,范围:21 - 94岁,标准差:11.18)。2021年软件实施前获得了1728张图像(A),实施后获得了2330张图像(B),2022年有269张图像(C1),2023年有250张图像(C2)。结果表明诊断图像质量有显著改善(p < 0.01)。“完美”检查的百分比从22.34%升至32.27%,而“不足”图像在2021年从13.31%降至5.41%,并在2022年和2023年分别保持4.46%和3.20%的“不足”图像的积极趋势(p < 0.01)。

结论

使用可靠的软件平台实时进行人工智能驱动的质量评估有可能在图像质量方面取得持久改善,支持放射技师的专业成长,并同时提高机构质量标准和文档记录水平。

关键点

问题 人工智能驱动的质量评估如何降低已知会影响敏感度并增加间期癌风险的乳腺钼靶摄影质量不足的情况?研究结果 人工智能的实施使“不足”的乳腺钼靶片从13.31%降至3.20%,并显著改善了实质可视化,各亚组趋势一致。临床意义 通过减少“不足”的乳腺钼靶片并提高成像质量,人工智能驱动的工具提高了诊断可靠性,并支持在乳腺癌筛查中取得更好的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验