Carloni Giacomo, Gaday Quentin, Petit Julienne, Martinez Mariano, Megrian Daniela, Sogues Adrià, Ben Assaya Mathilde, Kakonyi Marcell, Haouz Ahmed, Alzari Pedro M, Wehenkel Anne Marie
Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Bacterial Cell Cycle Mechanisms Unit, F-75015 Paris, France.
Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Structural Microbiology Unit, F-75015 Paris, France.
bioRxiv. 2025 Jun 29:2025.06.28.662095. doi: 10.1101/2025.06.28.662095.
D,L-endopeptidase RipA is the major PG hydrolase required for daughter cell separation in (), as RipA defects severely hinder cell division and increase antibiotic vulnerability. Despite extensive studies, the mechanisms governing RipA regulation remain controversial and poorly understood. Here, we report an integrative structural and functional analysis of the SteAB system, a regulatory complex that has been shown to modulate cell separation in the model organism () and is conserved across . Although SteB was previously proposed to act as a mycobacterial outer membrane copper transporter, the crystal structures of the homodimeric protein, alone and in complex with the RipA coiled-coil (CC) domain, rule out this hypothesis. Instead, the high-affinity SteB-RipA interaction, together with computational and biophysical data, strongly supports the role of SteB as a direct RipA activator that releases enzyme autoinhibition upon complex formation. In addition, crystallographic characterization of the cytoplasmic core of SteA revealed a homodimeric organization harboring a conserved functional pocket similar to the phosphonucleotide-binding site of thiamine pyrophosphokinase. These data, coupled with the phenotypic analysis of a knockout mutant of , support a model in which the transmembrane SteAB heterotetramer, driven by cytoplasmic ligand binding, orchestrates the productive periplasmic positioning of RipA, leading to PG hydrolysis activation. These findings shed new light on the regulation of mycobacterial cell wall remodeling, with implications for understanding pathogenesis and identifying novel antimicrobial targets.
D,L-内肽酶RipA是()中 daughter cell分离所需的主要PG水解酶,因为RipA缺陷严重阻碍细胞分裂并增加抗生素易感性。尽管进行了广泛的研究,但RipA调控的机制仍存在争议且了解甚少。在这里,我们报告了SteAB系统的综合结构和功能分析,该调控复合物已被证明可调节模式生物()中的细胞分离,并且在整个()中保守。尽管先前有人提出SteB作为分枝杆菌外膜铜转运蛋白,但同二聚体蛋白单独以及与RipA卷曲螺旋(CC)结构域复合的晶体结构排除了这一假设。相反,高亲和力的SteB-RipA相互作用,连同计算和生物物理数据,有力地支持了SteB作为直接RipA激活剂的作用,该激活剂在复合物形成时释放酶的自抑制作用。此外,SteA细胞质核心的晶体学表征揭示了一个同二聚体组织,其具有与硫胺焦磷酸激酶的磷酸核苷酸结合位点相似的保守功能口袋。这些数据,再加上()敲除突变体的表型分析,支持了一个模型,即由细胞质配体结合驱动的跨膜SteAB异源四聚体协调RipA在周质中的有效定位,从而导致PG水解激活。这些发现为分枝杆菌细胞壁重塑的调控提供了新的见解,对理解()发病机制和确定新的抗菌靶点具有重要意义。