Hollingsworth Ethan W, Chen Zhuoxin, Chen Cindy X, Jacinto Sandra H, Liu Taryn A, Kvon Evgeny Z
bioRxiv. 2025 Jun 21:2025.06.20.660819. doi: 10.1101/2025.06.20.660819.
Single nucleotide variants within enhancers-non-coding DNA elements that regulate transcription-often lead to aberrant gene activation and contribute to a wide range of genetic disorders (Claussnitzer et al. 2015; Doan et al. 2016; Turner et al. 2017; Yanchus et al. 2022; Lettice et al. 2008). The mechanism by which ectopic gene activation occurs through these gain-of-function enhancer mutations remains poorly understood. Using the ZRS, a benchmark disease-associated enhancer of ( ), as a model, we demonstrate that poised (i.e., accessible but inactive) chromatin sensitizes to aberrant activation in anterior limb bud, leading to polydactyly. In the anterior limb cells of wild-type mice, is inactive, but the ZRS is accessible and marked by enhancer-associated histone modifications. We demonstrate that this poising signature explains how over 20 independent rare variants within the ZRS cause misexpression in the same anterior limb bud cell population, resulting in similar limb malformations, despite affecting binding sites for different activators and repressors. Disabling pioneer transcription factor binding to the ZRS suppresses its poised state in anterior cells, prevents aberrant activation of the ZRS by rare variants, and fully rescues limb malformations in variant knock-in mice. A thorough examination of other disease-associated enhancers with pathogenic gain-of-function variants revealed that they are all poised in tissues with ectopic activity. We use this poising signature to predict and validate ectopic forebrain activity of previously uncharacterized autism-associated non-coding variants. Our findings suggest that spatial enhancer poising, likely a byproduct of development, creates a susceptibility to non-coding mutations and offers a potential mechanistic explanation for the burden of disease-associated non-coding variants.
增强子(调控转录的非编码DNA元件)内的单核苷酸变异通常会导致异常的基因激活,并引发多种遗传疾病(Claussnitzer等人,2015年;Doan等人,2016年;Turner等人,2017年;Yanchus等人,2022年;Lettice等人,2008年)。通过这些功能获得性增强子突变发生异位基因激活的机制仍知之甚少。我们以ZRS(一种典型的与疾病相关的增强子)作为模型,证明了处于就绪状态(即可接近但无活性)的染色质会使前肢芽中的基因易于发生异常激活,从而导致多指畸形。在野生型小鼠的前肢细胞中,基因无活性,但ZRS是可接近的,并以与增强子相关的组蛋白修饰为标志。我们证明,这种就绪特征解释了ZRS内超过20个独立的罕见变异如何在同一前肢芽细胞群体中导致基因表达异常,尽管这些变异影响不同激活因子和抑制因子的结合位点,但仍会导致相似的肢体畸形。使先驱转录因子与ZRS结合失活可抑制其在前体细胞中的就绪状态,防止罕见变异对ZRS的异常激活,并完全挽救变异敲入小鼠的肢体畸形。对其他具有致病性功能获得性变异的疾病相关增强子进行的全面检查表明,它们在具有异位活性的组织中均处于就绪状态。我们利用这种就绪特征预测并验证了先前未表征的自闭症相关非编码变异的异位前脑活动。我们的研究结果表明,空间增强子就绪可能是发育的副产品,它会使细胞对非编码突变敏感,并为与疾病相关的非编码变异负担提供了潜在的机制解释。