Pradhan Bijay Laxmi, Sen Prince, Dey Krishna Kishor, Ghosh Manasi
Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar-Pradesh, 221005, India.
Physics Section, Mahila Maha Vidyalaya, Banaras Hindu University, Varanasi, Uttar-Pradesh, 221005, India.
J Biomol NMR. 2025 Jul 16. doi: 10.1007/s10858-025-00472-z.
Cellulose nanocrystals (CNCs) is synthesized from alpha-cellulose by acid hydrolysis method, and formation of nanocrystallization is comprised by using various microscopic and spectroscopic techniques like PXRD, XPS, Raman, FTIR, PL, UV-Vis, DSC, TGA, DLS, SEM, TEM. Nanocrystalline cellulose shows a notably higher photoluminescence (PL) intensity than cellulose, which enhances its ability to absorb and emit visible light. This increase in PL intensity is attributed to a smaller particle size of CNCs, greater surface area, and quantum confinement effects. The higher intensity of the XPS spectrum further supports the larger surface area of CNCs. PXRD and Raman spectroscopy results show that CNCs has a higher crystallinity index than cellulose. Through deconvolution of the C CP-MAS SSNMR spectrum, we confirmed a significant reduction in the relative abundance of the amorphous region of cellulose (43.61%) to just 4.97% in CNCs. The C CP-MAS SSNMR spectrum of CNCs, at the C4, C6, C2C3C5 nuclei sites, can be fitted by two distinct lines for both amorphous and crystalline region, indicating the formation of a co-crystal from two nanocrystallites. Despite this, the principal components of the CSA (chemical shift anisotropy) tensor remain unchanged, suggesting similar electronic environments for these two nanocrystallites. The spin-lattice relaxation time and local correlation time of cellulose and CNCs are determined for chemically distinct carbon nuclei residing on D-glucopyranose units. It is noteworthy that the C spin-lattice relaxation time and C local correlation time are longer for each chemically distinct nucleus in CNCs compared to cellulose. It can be predicted by observing the NMR relaxometry data that the longer relaxation time in CNCs is due to the enhancement of crystallinity index. Hence, a correlation between the crystallinity index and nuclear spin dynamics can be established by NMR relaxometry measurements. These findings offer significant insights into the intricate structure and dynamic behavior of cellulose and nanocrystalline cellulose (CNCs), crucial for advancing biomimetic material design, which has huge applications across the pharmaceutical, textile, and cosmetics industries.
纤维素纳米晶体(CNCs)通过酸水解法由α-纤维素合成,纳米晶化的形成通过使用各种微观和光谱技术来确定,如粉末X射线衍射(PXRD)、X射线光电子能谱(XPS)、拉曼光谱、傅里叶变换红外光谱(FTIR)、光致发光(PL)、紫外可见光谱(UV-Vis)、差示扫描量热法(DSC)、热重分析法(TGA)、动态光散射(DLS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)。纳米晶纤维素的光致发光(PL)强度明显高于纤维素,这增强了其吸收和发射可见光的能力。PL强度的增加归因于CNCs较小的粒径、更大的表面积和量子限域效应。XPS光谱的更高强度进一步支持了CNCs更大的表面积。PXRD和拉曼光谱结果表明,CNCs的结晶度指数高于纤维素。通过对碳交叉极化魔角旋转固体核磁共振(C CP-MAS SSNMR)谱进行去卷积,我们证实纤维素无定形区域的相对丰度从43.61%显著降低至CNCs中的仅4.97%。CNCs在C4、C6、C2C3C5核位点的C CP-MAS SSNMR谱,对于无定形和结晶区域都可以由两条不同的线拟合,表明由两个纳米微晶形成了共晶体。尽管如此,化学位移各向异性(CSA)张量的主要成分保持不变,这表明这两个纳米微晶具有相似的电子环境。针对位于D-吡喃葡萄糖单元上化学性质不同的碳核,测定了纤维素和CNCs的自旋晶格弛豫时间和局部相关时间。值得注意的是,与纤维素相比,CNCs中每个化学性质不同的核的C自旋晶格弛豫时间和C局部相关时间更长。通过观察核磁共振弛豫测量数据可以预测,CNCs中较长的弛豫时间是由于结晶度指数的提高。因此,通过核磁共振弛豫测量可以建立结晶度指数与核自旋动力学之间的相关性。这些发现为纤维素和纳米晶纤维素(CNCs)的复杂结构和动态行为提供了重要见解,这对于推进仿生材料设计至关重要,仿生材料设计在制药、纺织和化妆品行业有广泛应用。