Li Xu, Tan Yong, Li Zhe, Wang Youjuan, Lu Chang, Liao Shiyi, Yin Baoli, Chen Baode, Liu Huiyi, Wei Hanlin, Song Guosheng
State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.
J Am Chem Soc. 2025 Jul 30;147(30):26518-26533. doi: 10.1021/jacs.5c06434. Epub 2025 Jul 16.
Optical imaging plays a pivotal role in the diagnosis and management of cancer, yet conventional techniques often suffer from limitations such as tissue autofluorescence, insufficient imaging depth, and signal persistence. Here, we introduce a hybrid nanosensitizer, SPNs(SP1)@CoOOH, that leverages cascade energy transformation (ultrasonic → chemical → photonic energy) to enable ultrasound-activated luminescence imaging concomitant with enhanced sonodynamic therapy (SDT). By integrating semiconducting polymer nanoparticles (SPNs) with cobalt oxide hydroxide (CoOOH), our platform facilitates dual-pathway reactive oxygen species (ROS) generation under acidic and ultrasound costimulation. In this system, the ultrasound enhanced the chemodynamic effect of CoOOH to catalyze water into singlet oxygen, while ultrasound improves electron-hole separation within the SPNs, leading to efficient hydroxyl radical formation. This dual mechanism results in a 3.5-fold increase in ROS production relative to SPNs alone and triggers ROS-thiophene interactions that emit luminescence. Notably, the emitted luminescence correlates linearly with ROS levels and tumor inhibition rates, offering a robust method for a real-time monitoring therapeutic process. Furthermore, our modular design extends to other organic systems, including cyanine and porphyrin-based nanostructures, achieving up to 14.2-fold enhancements in ROS generation and 6.3-fold increases in luminescence intensity. By addressing the dual challenges of inefficient ROS production and real-time monitoring in SDT, our study lays the foundation for next-generation ultrasound-driven theranostics, paving the way for luminescence imaging-guided, personalized cancer therapy.
光学成像在癌症的诊断和治疗中起着关键作用,然而传统技术常常受到诸如组织自发荧光、成像深度不足和信号持久性等限制。在此,我们引入了一种混合纳米敏化剂,即SPNs(SP1)@CoOOH,它利用级联能量转换(超声→化学→光子能量)实现超声激活发光成像,并同时增强声动力疗法(SDT)。通过将半导体聚合物纳米颗粒(SPNs)与氢氧化钴(CoOOH)相结合,我们的平台在酸性和超声共刺激下促进了双途径活性氧(ROS)的产生。在该系统中,超声增强了CoOOH的化学动力学效应,将水催化成单线态氧,同时超声改善了SPNs内的电子-空穴分离,从而导致高效的羟基自由基形成。这种双重机制使得ROS的产生相对于单独的SPNs增加了3.5倍,并触发了ROS-噻吩相互作用从而发出荧光。值得注意的是,发出的荧光与ROS水平和肿瘤抑制率呈线性相关,为实时监测治疗过程提供了一种可靠的方法。此外,我们的模块化设计扩展到了其他有机系统,包括基于花菁和卟啉的纳米结构,实现了ROS产生高达14.2倍的增强和发光强度6.3倍的增加。通过解决SDT中ROS产生效率低下和实时监测这两个双重挑战,我们的研究为下一代超声驱动的诊疗一体化奠定了基础,为发光成像引导的个性化癌症治疗铺平了道路。