Ludwig J D, Wilks S C, Kemp A J, Williams G J, Lemos N, Rockafellow E, Miao B, Shrock J E, Milchberg H M, Vay J-L, Huebl A, Lehe R, Cimmino A, Versaci R, Bulanov S V, Valenta P, Tang V, Reagan B A
Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94551, USA.
Xcimer Energy, 10325 E 47th Ave, Denver, Colorado, 80238, USA.
Sci Rep. 2025 Jul 17;15(1):25902. doi: 10.1038/s41598-025-95440-w.
High energy muons, due to their unique ability to penetrate deeply into matter, can enable radiography of structures that cannot be probed by other forms of radiation. Current terrestrial sources of muons require conventional GeV-TeV particle accelerators which are hundreds to thousands of meters in size. Laser wakefield acceleration (LWFA) can achieve acceleration gradients of two-to-three orders of magnitude greater than conventional accelerators, thus shrinking the accelerator to a number of meters. We propose a concept for a compact muon source based on the first self-consistent PIC simulations of an all optical LWFA that uses a guiding channel to achieve electron energies of 100 GeV in a distance of 6 m with a driving laser energy of 300 J in a single stage. From the resulting electron energy spectrum we estimate muon production for this source. We show that this accelerator, coupled with high average power laser driver technology, provides the basis for a high energy and high flux muon source.
高能μ子由于其独特的深入物质内部的能力,能够对其他形式辐射无法探测的结构进行射线照相。目前地面上的μ子源需要传统的GeV-TeV粒子加速器,其尺寸达数百米至数千米。激光尾场加速(LWFA)能够实现比传统加速器大两到三个数量级的加速梯度,从而将加速器尺寸缩小至数米。我们基于全光LWFA的首个自洽粒子模拟提出了一种紧凑型μ子源概念,该模拟使用引导通道,在单级中利用300 J的驱动激光能量在6米距离内实现100 GeV的电子能量。根据所得电子能谱,我们估算了该源的μ子产生情况。我们表明,这种加速器与高平均功率激光驱动技术相结合,为高能高通量μ子源提供了基础。