Azevedo Tiago André, Abrantes Ana Margarida, Carvalho João
CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal.
ICBR-Coimbra Institute for Clinical and Biomedical Research - Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Institute of Biophysics, University of Coimbra, Coimbra, Portugal.
Technol Cancer Res Treat. 2025 Jan-Dec;24:15330338251350909. doi: 10.1177/15330338251350909. Epub 2025 Jul 17.
As the prevalence of cancer continues to rise in a rapidly aging population, the integration of advancements in computational capabilities with oncological practices presents promising opportunities for enhancing cancer treatment management. modeling has emerged as a key approach for studying the radiobiological aspects of cancer, providing novel pathways for understanding cellular mechanisms and potential future improvements in clinical radiotherapy. This review examines significant advancements and ongoing challenges in simulating the complex interactions of ionizing radiation with cancer cells. We explore the utility and limitations of current models, including agent-based models and hybrid approaches that integrate cellular behavior with radiobiological effects using Monte Carlo tools. The paper highlights key developments that have enabled more accurate simulations of DNA damage, various repair processes, and the influence of the microenvironment on cellular radiosensitivity. Looking ahead, we address the need for further refinement of these models and their integration with experimental data to enhance predictive accuracy and potential clinical applications. The capacity of these models to potentiate personalized cancer therapy is emphasized, highlighting the ongoing shift towards more comprehensive and sophisticated computational approaches.
随着癌症患病率在快速老龄化的人口中持续上升,将计算能力的进步与肿瘤学实践相结合,为加强癌症治疗管理带来了充满希望的机遇。建模已成为研究癌症放射生物学方面的关键方法,为理解细胞机制以及临床放射治疗未来的潜在改进提供了新途径。本综述探讨了在模拟电离辐射与癌细胞复杂相互作用方面取得的重大进展和持续存在的挑战。我们探究了当前模型的效用和局限性,包括基于主体的模型以及使用蒙特卡罗工具将细胞行为与放射生物学效应相结合的混合方法。本文强调了一些关键进展,这些进展使得能够更准确地模拟DNA损伤、各种修复过程以及微环境对细胞放射敏感性的影响。展望未来,我们阐述了进一步完善这些模型并将其与实验数据相结合以提高预测准确性和潜在临床应用的必要性。强调了这些模型增强个性化癌症治疗的能力,突出了正朝着更全面、更复杂的计算方法转变的趋势。
Technol Cancer Res Treat. 2025
Arch Ital Urol Androl. 2025-6-30
Open Res Eur. 2025-5-6
Phys Med Biol. 2025-6-20
Phys Med Biol. 2024-4-3
Bull Math Biol. 2024-1-18
Technol Cancer Res Treat. 2023
Semin Cancer Biol. 2024-1