文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用蒙特卡洛工具进行放射生物学建模——模拟细胞对电离辐射的反应。

Radiobiological Modeling with Monte Carlo Tools - Simulating Cellular Responses to Ionizing Radiation.

作者信息

Azevedo Tiago André, Abrantes Ana Margarida, Carvalho João

机构信息

CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal.

ICBR-Coimbra Institute for Clinical and Biomedical Research - Area of Environment, Genetics and Oncobiology (CIMAGO), Faculty of Medicine, Institute of Biophysics, University of Coimbra, Coimbra, Portugal.

出版信息

Technol Cancer Res Treat. 2025 Jan-Dec;24:15330338251350909. doi: 10.1177/15330338251350909. Epub 2025 Jul 17.


DOI:10.1177/15330338251350909
PMID:40671567
Abstract

As the prevalence of cancer continues to rise in a rapidly aging population, the integration of advancements in computational capabilities with oncological practices presents promising opportunities for enhancing cancer treatment management. modeling has emerged as a key approach for studying the radiobiological aspects of cancer, providing novel pathways for understanding cellular mechanisms and potential future improvements in clinical radiotherapy. This review examines significant advancements and ongoing challenges in simulating the complex interactions of ionizing radiation with cancer cells. We explore the utility and limitations of current models, including agent-based models and hybrid approaches that integrate cellular behavior with radiobiological effects using Monte Carlo tools. The paper highlights key developments that have enabled more accurate simulations of DNA damage, various repair processes, and the influence of the microenvironment on cellular radiosensitivity. Looking ahead, we address the need for further refinement of these models and their integration with experimental data to enhance predictive accuracy and potential clinical applications. The capacity of these models to potentiate personalized cancer therapy is emphasized, highlighting the ongoing shift towards more comprehensive and sophisticated computational approaches.

摘要

随着癌症患病率在快速老龄化的人口中持续上升,将计算能力的进步与肿瘤学实践相结合,为加强癌症治疗管理带来了充满希望的机遇。建模已成为研究癌症放射生物学方面的关键方法,为理解细胞机制以及临床放射治疗未来的潜在改进提供了新途径。本综述探讨了在模拟电离辐射与癌细胞复杂相互作用方面取得的重大进展和持续存在的挑战。我们探究了当前模型的效用和局限性,包括基于主体的模型以及使用蒙特卡罗工具将细胞行为与放射生物学效应相结合的混合方法。本文强调了一些关键进展,这些进展使得能够更准确地模拟DNA损伤、各种修复过程以及微环境对细胞放射敏感性的影响。展望未来,我们阐述了进一步完善这些模型并将其与实验数据相结合以提高预测准确性和潜在临床应用的必要性。强调了这些模型增强个性化癌症治疗的能力,突出了正朝着更全面、更复杂的计算方法转变的趋势。

相似文献

[1]
Radiobiological Modeling with Monte Carlo Tools - Simulating Cellular Responses to Ionizing Radiation.

Technol Cancer Res Treat. 2025

[2]
Dosimetric investigation of small fields in radiotherapy measurements using Monte Carlo simulations, CC04 ionization chamber, and razor diode.

Phys Eng Sci Med. 2025-6-16

[3]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[4]
Innovations in cancer treatment: evaluating drug resistance with lab-on-a-chip technologies.

Int J Pharm. 2025-7-5

[5]
In silico modeling of a clinical photon-counting CT system: Verification and validation.

Med Phys. 2025-6

[6]
How lived experiences of illness trajectories, burdens of treatment, and social inequalities shape service user and caregiver participation in health and social care: a theory-informed qualitative evidence synthesis.

Health Soc Care Deliv Res. 2025-6

[7]
Wood Waste Valorization and Classification Approaches: A systematic review.

Open Res Eur. 2025-5-6

[8]
GRPR-targeted gold nanoparticles as selective radiotherapy enhancers in glioblastoma.

Phys Med Biol. 2025-6-20

[9]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[10]
The use of Monte Carlo simulation techniques in brachytherapy: A comprehensive literature review.

Brachytherapy. 2025

本文引用的文献

[1]
The importance of standardization and challenges of dosimetry in conventional preclinical radiation biology research.

Br J Radiol. 2025-7-1

[2]
Mechanistic in silico explorations of the immunogenic and synergistic effects of radiotherapy and immunotherapy: a critical review.

Phys Eng Sci Med. 2024-12

[3]
A joint ESTRO and AAPM guideline for development, clinical validation and reporting of artificial intelligence models in radiation therapy.

Radiother Oncol. 2024-8

[4]
Dosimetric validation of SmART-RAD Monte Carlo modelling for x-ray cabinet radiobiology irradiators.

Phys Med Biol. 2024-4-19

[5]
Equivalent uniform aerobic dose in radiotherapy for hypoxic tumors.

Phys Med Biol. 2024-4-3

[6]
Predicting Radiotherapy Patient Outcomes with Real-Time Clinical Data Using Mathematical Modelling.

Bull Math Biol. 2024-1-18

[7]
Oncological Applications of Quantum Machine Learning.

Technol Cancer Res Treat. 2023

[8]
Deep learning-based synthetic dose-weighted LET map generation for intensity modulated proton therapy.

Phys Med Biol. 2024-1-5

[9]
Evaluation of monte carlo to support commissioning of the treatment planning system of new pencil beam scanning proton therapy facilities.

Phys Med Biol. 2024-2-13

[10]
Tumor hypoxia and radiotherapy: A major driver of resistance even for novel radiotherapy modalities.

Semin Cancer Biol. 2024-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索