Monsia Rivaaj, Gundry Stewart C, Mohr Molly L, Smith Macey A, Bhattacharyya Sudeep, Hati Sanchita
Department of Chemistry and Biochemistry, University of Wisconsin─Eau Claire, Eau Claire, Wisconsin 54702, United States.
J Chem Inf Model. 2025 Jul 28;65(14):7447-7462. doi: 10.1021/acs.jcim.5c00724. Epub 2025 Jul 17.
With the advancement of artificial intelligence-embedded methodologies, their application to predict fundamental molecular properties has become increasingly prevalent. In this study, a graph convolutional neural network fingerprint-enabled artificial neural network (GCN-ANN) was utilized to probe the relationship between the chemical hardness of neurochemicals and their affinities for neuroreceptors. The GCN-ANN model was derived using a training set of B3LYP-calculated HOMO and LUMO energies of >110,000 molecules. A benchmark study of 45 neurochemicals produced consistent hardness and electronegativity values across the three density functionals, namely, B3LYP, ωB97XD, and M06-2X. However, the computed energetics varied significantly when the Hartree-Fock theory was used. The scrutiny of binding affinities, hardness, and GCN-ANN-derived substructures of neurochemicals reinforces the notion that human brain receptors interact with neurochemicals based on Pearson's Hard-Soft Acid-Base (HSAB) principle. In summary, this machine-learning-embedded study offers physical insights into the interactions between neurochemicals and neuroreceptors, which could lead to the development of more targeted and effective antidepressants, thereby addressing anxiety and depression with greater precision and immediacy.
随着嵌入人工智能方法的发展,它们在预测基本分子性质方面的应用越来越普遍。在本研究中,一种基于图卷积神经网络指纹的人工神经网络(GCN-ANN)被用于探究神经化学物质的化学硬度与其对神经受体亲和力之间的关系。GCN-ANN模型是使用一组由B3LYP计算的超过110,000个分子的最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)能量的训练集推导出来的。对45种神经化学物质的基准研究在三种密度泛函,即B3LYP、ωB97XD和M06-2X中产生了一致的硬度和电负性值。然而,当使用哈特里-福克理论时,计算出的能量学有显著差异。对神经化学物质的结合亲和力、硬度和GCN-ANN衍生子结构的审查强化了这样一种观点,即人类大脑受体基于皮尔逊软硬酸碱(HSAB)原理与神经化学物质相互作用。总之,这项嵌入机器学习的研究为神经化学物质与神经受体之间的相互作用提供了物理见解,这可能导致开发出更有针对性和更有效的抗抑郁药,从而更精确、更直接地解决焦虑和抑郁问题。