文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于活植物光学检测与递送应用的超分子化学

Supramolecular chemistry for optical detection and delivery applications in living plants.

作者信息

Balli Maria Vittoria, Biedermann Frank, Prodi Luca, Picchetti Pierre

机构信息

Department of Chemistry "Giacomo Ciamician", Università degli Studi di Bologna, Via Selmi 2, 40126 Bologna, Italy.

Institute of Nanotechnology (INT) Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany.

出版信息

Chem Soc Rev. 2025 Jul 17. doi: 10.1039/d4cs00500g.


DOI:10.1039/d4cs00500g
PMID:40673397
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12268990/
Abstract

Over the past century, modern agriculture, through the use of synthetic fertilisers, pesticides, and improved plant breeding, has greatly increased food production. However, this progress has brought serious environmental consequences, including excessive water use and harmful pesticide exposure. In addition, future farming must adapt to the growing challenges posed by climate change and natural disasters through more sustainable practices and resilient crop management. In this context, emerging supramolecular strategies offer promising alternatives through responsive molecular assemblies capable of precise sensing and controlled delivery. In this review, we thus discuss the application of supramolecular chemistry principles to plant science and agriculture, with a particular emphasis on the design and implementation of host-guest systems, chemosensors, and supramolecular (nano)delivery vehicles for use in living plants. We report and analyse recent advances in sensing and monitoring of plant processes, the detection of pesticides, the preparation of safer and more effective supramolecular pesticides, and nucleic acid-based crop protection strategies, highlighting key design principles specific to the plant biological context. Moreover, key challenges are discussed regarding the application of supramolecular systems to plants, and examples are highlighted to promote new interdisciplinary strategies for designing next-generation tools for real-time, plant studies and sustainable crop management.

摘要

在过去的一个世纪里,现代农业通过使用合成肥料、农药以及改良植物育种技术,极大地提高了粮食产量。然而,这一进展带来了严重的环境后果,包括过度用水和有害农药暴露。此外,未来的农业必须通过更可持续的做法和有韧性的作物管理,来适应气候变化和自然灾害带来的日益严峻的挑战。在这种背景下,新兴的超分子策略通过能够进行精确传感和控制递送的响应性分子组装体提供了有前景的替代方案。因此,在本综述中,我们讨论超分子化学原理在植物科学和农业中的应用,特别强调用于活植物的主客体系统、化学传感器和超分子(纳米)递送载体的设计与实施。我们报告并分析了植物过程传感与监测、农药检测、更安全有效的超分子农药制备以及基于核酸的作物保护策略方面的最新进展,突出了特定于植物生物学背景的关键设计原则。此外,还讨论了超分子系统应用于植物所面临的关键挑战,并列举了一些例子,以推动设计用于实时植物研究和可持续作物管理的下一代工具的新跨学科策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/67303003b565/d4cs00500g-f46.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/ca8de34e9c64/d4cs00500g-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/9800f21a5acd/d4cs00500g-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/80951ce8eb22/d4cs00500g-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/f794d23fb67c/d4cs00500g-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/c52ba9a0729b/d4cs00500g-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/a5ce61febde5/d4cs00500g-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/f35800e08194/d4cs00500g-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/f1968da6af47/d4cs00500g-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/41532713688a/d4cs00500g-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/0e8681ad4423/d4cs00500g-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/8b47cd80141b/d4cs00500g-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/e6d7d99a7d20/d4cs00500g-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/d4c88f499660/d4cs00500g-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/f11d042aaa99/d4cs00500g-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/e83edfdbcc71/d4cs00500g-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/b6df087383c4/d4cs00500g-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/651c0f43e8ce/d4cs00500g-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/3873f33da9df/d4cs00500g-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/8e3976eba401/d4cs00500g-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/3bf93e6477c0/d4cs00500g-f20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/fd6748e46816/d4cs00500g-f21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/f9ae6c07e739/d4cs00500g-f22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/049d6e883185/d4cs00500g-f23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/af288644eccb/d4cs00500g-f24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/da0960491b34/d4cs00500g-f25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/6d88a727c9af/d4cs00500g-f26.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/937e758af1e7/d4cs00500g-f27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/233923eaaa9d/d4cs00500g-f28.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/84a1cdee23b4/d4cs00500g-f29.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/a1820202bc57/d4cs00500g-f31.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/7350913cec35/d4cs00500g-f32.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/b2c5087b98a3/d4cs00500g-f34.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/7c6f4f7e1c9f/d4cs00500g-f35.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/798350280df8/d4cs00500g-f36.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/cebb87cfd094/d4cs00500g-f37.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/3093e6e1b7e6/d4cs00500g-f38.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/72ef1025cdce/d4cs00500g-f40.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/6da4437ca1b2/d4cs00500g-f43.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/fe9cf1ff6b71/d4cs00500g-f44.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/67303003b565/d4cs00500g-f46.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/ca8de34e9c64/d4cs00500g-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/9800f21a5acd/d4cs00500g-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/80951ce8eb22/d4cs00500g-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/f794d23fb67c/d4cs00500g-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/c52ba9a0729b/d4cs00500g-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/a5ce61febde5/d4cs00500g-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/f35800e08194/d4cs00500g-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/f1968da6af47/d4cs00500g-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/41532713688a/d4cs00500g-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/0e8681ad4423/d4cs00500g-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/8b47cd80141b/d4cs00500g-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/e6d7d99a7d20/d4cs00500g-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/d4c88f499660/d4cs00500g-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/f11d042aaa99/d4cs00500g-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/e83edfdbcc71/d4cs00500g-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/b6df087383c4/d4cs00500g-f16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/651c0f43e8ce/d4cs00500g-f17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/3873f33da9df/d4cs00500g-f18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/8e3976eba401/d4cs00500g-f19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/3bf93e6477c0/d4cs00500g-f20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/fd6748e46816/d4cs00500g-f21.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/f9ae6c07e739/d4cs00500g-f22.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/049d6e883185/d4cs00500g-f23.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/af288644eccb/d4cs00500g-f24.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/da0960491b34/d4cs00500g-f25.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/6d88a727c9af/d4cs00500g-f26.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/937e758af1e7/d4cs00500g-f27.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/233923eaaa9d/d4cs00500g-f28.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/84a1cdee23b4/d4cs00500g-f29.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/a1820202bc57/d4cs00500g-f31.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/7350913cec35/d4cs00500g-f32.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/b2c5087b98a3/d4cs00500g-f34.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/7c6f4f7e1c9f/d4cs00500g-f35.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/798350280df8/d4cs00500g-f36.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/cebb87cfd094/d4cs00500g-f37.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/3093e6e1b7e6/d4cs00500g-f38.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/72ef1025cdce/d4cs00500g-f40.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/6da4437ca1b2/d4cs00500g-f43.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/fe9cf1ff6b71/d4cs00500g-f44.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afa/12268990/67303003b565/d4cs00500g-f46.jpg

相似文献

[1]
Supramolecular chemistry for optical detection and delivery applications in living plants.

Chem Soc Rev. 2025-7-17

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[4]
Turning over a new leaf: innovative pest control from a materials science perspective.

Chem Soc Rev. 2025-6-30

[5]
Advancing crop disease resistance through genome editing: a promising approach for enhancing agricultural production.

Front Genome Ed. 2024-6-26

[6]
Microneedle Sensors for Ion Monitoring in Plants. One Step Closer to Smart Agriculture.

ACS Sens. 2025-7-25

[7]
Carbon quantum dots as versatile nanomaterials for improving soil health and plant stress tolerance: a comprehensive review.

Planta. 2025-7-9

[8]
Production, Delivery, and Regulatory Aspects for Application of Plant-Based Anti-microbial Peptides: a Comprehensive Review.

Probiotics Antimicrob Proteins. 2025-1-4

[9]
Artificial intelligence in the mass production of natural enemies for biological control in modern agriculture.

Pest Manag Sci. 2025-8-14

[10]
Nanobiosensors based on on-site detection approaches for rapid pesticide sensing in the agricultural arena: A systematic review of the current status and perspectives.

Biotechnol Bioeng. 2024-9

本文引用的文献

[1]
Leaf absorption contributes to accumulation of microplastics in plants.

Nature. 2025-5

[2]
Selective Recognition and Extraction of Short-Chain Perfluoroalkyl Carboxylates by a Supramolecular Receptor.

Angew Chem Int Ed Engl. 2025-5-26

[3]
A supramolecular bactericidal material for preventing and treating plant-associated biofilms.

Nat Commun. 2025-3-17

[4]
Readily Visualized Perfluorooctanoic Acid Detection Using a Small Molecule Chemosensor.

Angew Chem Int Ed Engl. 2025-5

[5]
DNA-Based Nanostructured Platforms as Drug Delivery Systems.

Chem Bio Eng. 2024-1-9

[6]
Beyond species and spatial boundaries: Enabling long-distance gene silencing in plants via guanidinium-siRNA nanoparticles.

Plant Biotechnol J. 2025-4

[7]
Factors that Affect Quantification in Surface-Enhanced Raman Scattering.

ACS Nano. 2025-2-4

[8]
Fabrication of Multifunctional Three-Component Supramolecular Nano-Biscuits via Two Macrocycles-Involved Self-Assembly for Rice, Citrus and Kiwifruit Protections.

Adv Sci (Weinh). 2025-3

[9]
From Natural Product Derivative to Hexagonal Prism Supermolecule: Potent Biofilm Disintegration, Enhanced Foliar Affinity, and Effective Management of Tomato Bacterial Canker.

Angew Chem Int Ed Engl. 2025-2-17

[10]
Real-Time Monitoring of Volatile Organic Compound-Mediated Plant Intercommunication Using Surface-Enhanced Raman Scattering Nanosensor.

Adv Sci (Weinh). 2024-12-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索