Jang Jaepyo, Yoon Sungjun, Jung Hyunjin, Yoon Jiyong, Kim Jaehyon, Choi Heewon, Seong Duhwan, Shin Mikyung, Son Donghee
Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.
Mater Horiz. 2025 Jul 17. doi: 10.1039/d5mh00474h.
The development of stretchable and transparent electrodes is essential for next-generation wearable displays, human-machine interfaces, and on-skin bioelectronic devices; however, conventional approaches are limited by low fabrication compatibility with conventional semiconducting manufacturing processes, unstable electrical conductivity under stretching, and limited non-uniform areal transparency. Here, we report a novel device fabrication strategy for developing a highly transparent, intrinsically stretchable, photo-patternable, and vacuum-deposited (T-iSPV) electrode. The strain-insensitive performance of the T-iSPV is inherent in the formation of a conducting bilayer consisting of a crack-based Au nanomembrane and Au-elastomer nanocomposite during direct thermal deposition of Au onto an elastic substrate. In addition, a photo-patterning process and optimal thickness/design and evaporation rate of the Au bilayer delicately balance the stretchability, electrical conductivity, and transparency of the T-iSPV. To demonstrate its versatility, the T-iSPV is applied as a conformal bioelectronic interfacing electrode for monitoring electrocardiogram (ECG), electromyogram (EMG), and electrooculogram (EOG) signals. Furthermore, the T-iSPV electrochemically activates the stretchable active layers composed of poly-3-hexylthiophene (P3HT) in a styrene-ethylene-butylene-styrene (SEBS) polymer matrix to effectively modulate electrochromic displays. These findings underscore the potential of the T-iSPV for enabling the evolution of next-generation conformal bioelectronic and optoelectronic systems.
可拉伸透明电极的发展对于下一代可穿戴显示器、人机接口和皮肤表面生物电子设备至关重要;然而,传统方法存在与传统半导体制造工艺的制造兼容性低、拉伸时电导率不稳定以及面内透明度不均匀受限等问题。在此,我们报告了一种用于开发高度透明、本征可拉伸、光可图案化且真空沉积(T-iSPV)电极的新型器件制造策略。T-iSPV的应变不敏感性能源于在将金直接热沉积到弹性基板上的过程中形成了由基于裂纹的金纳米膜和金-弹性体纳米复合材料组成的导电双层。此外,光图案化工艺以及金双层的最佳厚度/设计和蒸发速率巧妙地平衡了T-iSPV的拉伸性、导电性和透明度。为展示其多功能性,T-iSPV被用作共形生物电子接口电极,用于监测心电图(ECG)、肌电图(EMG)和眼电图(EOG)信号。此外,T-iSPV电化学激活由聚-3-己基噻吩(P3HT)在苯乙烯-乙烯-丁烯-苯乙烯(SEBS)聚合物基质中组成的可拉伸活性层,以有效调制电致变色显示器。这些发现突出了T-iSPV在推动下一代共形生物电子和光电子系统发展方面的潜力。