文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

羧酸生物电子等排体提高Nurr1激动剂的选择性。

Carboxylic Acid Bioisosteres Boost Nurr1 Agonist Selectivity.

作者信息

Stiller Tanja, Gege Christian, Saeb Wael, Vietor Jan, López-García Úrsula, Busch Romy, Kohlhof Hella, Vitt Daniel, Merk Daniel

机构信息

Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.

Immunic AG, 82166 Gräfelfing, Germany.

出版信息

J Med Chem. 2025 Jul 17. doi: 10.1021/acs.jmedchem.5c01140.


DOI:10.1021/acs.jmedchem.5c01140
PMID:40674328
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7617969/
Abstract

Nuclear receptor related 1 (Nurr1) is a neuronal ligand-activated transcription factor implicated in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and multiple sclerosis, which has fueled the development of Nurr1 modulators. Among them, the clinically studied dihydroorotate dehydrogenase (DHODH) inhibitor vidofludimus was found to exhibit strong Nurr1 agonism. Here, we aimed to establish a vidofludimus-derived Nurr1 agonist lacking DHODH inhibitor potency as a tool. We explored bioisosteric replacement of the drug's carboxylate motif and succeeded in boosting selectivity for Nurr1 over DHODH to >100-fold. Dopaminergic neural cells treated with the optimized tetrazole-based Nurr1 agonist revealed induction of genes involved in neuroprotection and neuronal health, supporting the potential of Nurr1 activation in neurodegenerative diseases.

摘要

核受体相关蛋白1(Nurr1)是一种神经元配体激活转录因子,与包括阿尔茨海默病、帕金森病和多发性硬化症在内的神经退行性疾病有关,这推动了Nurr1调节剂的开发。其中,临床研究的二氢乳清酸脱氢酶(DHODH)抑制剂维托鲁单抗被发现具有强大的Nurr1激动作用。在此,我们旨在开发一种缺乏DHODH抑制活性的维托鲁单抗衍生的Nurr1激动剂作为工具。我们探索了该药物羧酸盐基序的生物电子等排体替代,并成功将对Nurr1的选择性提高到对DHODH的选择性的100倍以上。用优化后的基于四氮唑的Nurr1激动剂处理多巴胺能神经细胞,发现与神经保护和神经元健康相关的基因被诱导,这支持了在神经退行性疾病中激活Nurr1的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/43d2700d275c/EMS207341-f015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/c17d0c77062e/EMS207341-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/4ff4bd70e421/EMS207341-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/3033cac7d77b/EMS207341-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/14269266a474/EMS207341-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/8b6150e3e07d/EMS207341-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/c5c42e361969/EMS207341-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/190ef19a35cf/EMS207341-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/9053b1b813b7/EMS207341-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/0cb1397e3007/EMS207341-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/161137a85982/EMS207341-f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/addd55ee0c32/EMS207341-f011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/9651e09dd529/EMS207341-f012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/c04268278afa/EMS207341-f013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/ddffdb173c10/EMS207341-f014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/43d2700d275c/EMS207341-f015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/c17d0c77062e/EMS207341-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/4ff4bd70e421/EMS207341-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/3033cac7d77b/EMS207341-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/14269266a474/EMS207341-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/8b6150e3e07d/EMS207341-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/c5c42e361969/EMS207341-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/190ef19a35cf/EMS207341-f007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/9053b1b813b7/EMS207341-f008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/0cb1397e3007/EMS207341-f009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/161137a85982/EMS207341-f010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/addd55ee0c32/EMS207341-f011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/9651e09dd529/EMS207341-f012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/c04268278afa/EMS207341-f013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/ddffdb173c10/EMS207341-f014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cec7/7617969/43d2700d275c/EMS207341-f015.jpg

相似文献

[1]
Carboxylic Acid Bioisosteres Boost Nurr1 Agonist Selectivity.

J Med Chem. 2025-7-17

[2]
Structural Optimization of Oxaprozin for Selective Inverse Nurr1 Agonism.

J Med Chem. 2024-8-8

[3]
Targeting dihydroorotate dehydrogenase (DHODH) for host-directed therapy: Discovery of a novel alkyne-based scaffold inhibitor effective against SARS-CoV-2.

Eur J Med Chem. 2025-6-21

[4]
Direct long-read visualization reveals hidden variation in GCH1 gene copy number and precise expansion steps.

BMC Genomics. 2025-7-17

[5]
Development of a Potent Nurr1 Agonist Tool for In Vivo Applications.

J Med Chem. 2023-5-11

[6]
NURR1 Deficiency Is Associated to Altered Microglial Phenotype in Male Mice.

Mol Neurobiol. 2025-3-8

[7]
Crystal structure of dihydroorotate dehydrogenase from Helicobacter pylori with bound flavin mononucleotide.

Acta Crystallogr F Struct Biol Commun. 2025-3-1

[8]
DHODH-mediated mitochondrial redox homeostasis: a novel ferroptosis regulator and promising therapeutic target.

Redox Biol. 2025-7-23

[9]
Differentiation of neural stem cells from human olfactory mucosa into dopaminergic neuron-like cells.

IUBMB Life. 2024-9

[10]
DHODH Blockade Induces Ferroptosis in Neuroblastoma by Modulating the Mevalonate Pathway.

Mol Cell Proteomics. 2025-6-11

本文引用的文献

[1]
Structural and mechanistic profiling of Nurr1 modulation by vidofludimus enables structure-guided ligand design.

Commun Chem. 2025-5-21

[2]
A Nurr1 Agonist Derived from the Natural Ligand DHI Induces Neuroprotective Gene Expression.

J Med Chem. 2025-2-27

[3]
Tetrazoles: A multi-potent motif in drug design.

Eur J Med Chem. 2024-12-5

[4]
Development of Nurr1 agonists from amodiaquine by scaffold hopping and fragment growing.

Commun Chem. 2024-6-29

[5]
Synthesis and Characterization of DHODH Inhibitors Based on the Vidofludimus Scaffold with Pronounced Anti-SARS-CoV-2 Activity.

ChemMedChem. 2024-10-1

[6]
Safety and Dose-Response of Vidofludimus Calcium in Relapsing Multiple Sclerosis: Extended Results of a Placebo-Controlled Phase 2 Trial.

Neurol Neuroimmunol Neuroinflamm. 2024-5

[7]
Bioisoteres for carboxylic acids: From ionized isosteres to novel unionized replacements.

Bioorg Med Chem. 2024-4-15

[8]
Exploring Fatty Acid Mimetics as NR4A Ligands.

J Med Chem. 2023-11-23

[9]
Structure-Guided Design of Nurr1 Agonists Derived from the Natural Ligand Dihydroxyindole.

J Med Chem. 2023-10-12

[10]
Rejection of inappropriate synaptic partners in mouse retina mediated by transcellular FLRT2-UNC5 signaling.

Dev Cell. 2023-10-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索