Nylund Patrick William, Garrido-Zabala Berta, Tziola Stefania Iliana, Mohajershojai Tabassom, Berglund Hanna, Muylaert Catharina, Van Hemelrijck Lien Ann, Atienza Párraga Alba, Vasquez Louella, Jacob Jim, Bergquist Eric, Martín-Subero José-Ignacio, Öberg Fredrik, Karlsson Torbjörn, Nestor Marika, De Bruyne Elke, Kalushkova Antonia, Jernberg-Wiklund Helena
The University of Texas MD Anderson Cancer Center, Houston, Texas, United States.
Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden, Uppsala, Sweden.
Blood Adv. 2025 Jul 17. doi: 10.1182/bloodadvances.2023010571.
Multiple myeloma (MM) is a haematological disease of the plasma cell that remains clinically challenging despite the development of novel therapies. Epigenetic alterations have been demonstrated to contribute to MM pathogenesis, yet comprehensive studies into the links between different epigenetic regulatory systems in myeloma progression and drug resistance though clinically relevant, are largely lacking. G9a and the DNMTs are epigenetic modifiers that exhibit increased activity in MM, correlating with poor prognosis. To investigate the partnership between G9a and DNMTs, we used a combinatorial treatment approach involving small molecule inhibitors. In-depth molecular analysis of the H3K9me2 distribution, the DNA methylome and the transcriptome of MM revealed a silencing mechanism involving G9a and DNMTs, that represses key tumour suppressor genes. Moreover, dual inhibition of G9a and DNMTs reduced cell viability in primary MM cells and induced apoptosis in MM cell lines. This was accompanied by increased expression of apoptosis-related genes and decreased protein levels of the MM-associated oncoproteins IRF4, XBP1, and MYC. To assess the translational relevance of our in vitro findings, we evaluated the combination therapy in an in vivo preclinical xenograft MM model. Specifically, we demonstrate that the G9a inhibitor A366 synergize with the DNMTs inhibitor Decitabine to promote a robust tumour regression in vivo. Together, these data provide new insights into the cooperative role of G9a and the DNMTs in regulating gene silencing in MM and support dual epigenetic inhibition as a promising therapeutic strategy.
多发性骨髓瘤(MM)是一种浆细胞血液疾病,尽管有新型疗法的发展,但在临床上仍然具有挑战性。表观遗传改变已被证明与MM发病机制有关,然而,尽管具有临床相关性,但对骨髓瘤进展和耐药性中不同表观遗传调控系统之间联系的全面研究在很大程度上仍然缺乏。G9a和DNA甲基转移酶(DNMTs)是表观遗传修饰因子,在MM中活性增加,与预后不良相关。为了研究G9a和DNMTs之间的协同作用,我们采用了涉及小分子抑制剂的联合治疗方法。对MM的H3K9me2分布、DNA甲基化组和转录组进行深入的分子分析,揭示了一种涉及G9a和DNMTs的沉默机制,该机制抑制关键肿瘤抑制基因。此外,对G9a和DNMTs的双重抑制降低了原发性MM细胞的活力,并诱导了MM细胞系的凋亡。这伴随着凋亡相关基因表达的增加以及MM相关癌蛋白IRF4、XBP1和MYC蛋白水平的降低。为了评估我们体外研究结果的转化相关性,我们在体内临床前异种移植MM模型中评估了联合疗法。具体而言,我们证明G9a抑制剂A366与DNMTs抑制剂地西他滨协同作用可促进体内强大的肿瘤消退。总之,这些数据为G9a和DNMTs在调节MM基因沉默中的协同作用提供了新的见解,并支持双重表观遗传抑制作为一种有前景的治疗策略。