Hakim Md Abdul, Sanni Akeem, Osman Shams T, Hamdy Noha A, Purba Waziha Tasnim, Bhuiyan Md Mostofa Al Amin, Onigbinde Sherifdeen, El-Khordagui Labiba K, El-Yazbi Ahmed, Mechref Yehia
Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA.
Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
Proteomics. 2025 Jul;25(14):e70000. doi: 10.1002/pmic.70000. Epub 2025 Jul 17.
Type 2 diabetes (T2D) is a complex metabolic disorder with rising global prevalence, leading to major complications such as cognitive decline, cardiovascular disease, and systemic inflammation. Although advances in T2D pharmacotherapy have shown promise in addressing these complications, the underlying protective mechanisms remain unclear, especially as they appear to be independent of glycemic control. In this study, we performed a comprehensive proteomic analysis using LC-MS/MS to explore the molecular effects of newer antidiabetic drugs, specifically dipeptidyl peptidase 4 (DPP4) and sodium-glucose cotransporter 2 (SGLT2) inhibitors (SGLT2is), when combined with metformin, the first-line treatment for T2D. Serum samples from 76 individuals were analyzed, including 16 healthy subjects, 32 T2D patients on metformin monotherapy, and 28 T2D patients receiving combination therapy. We identified and quantified 505 low-abundance proteins, followed by statistical analysis and ingenuity pathway analysis. Our findings revealed significant changes in key biological pathways related to synaptogenesis, insulin-like growth factor transport, and neurovascular coupling signaling. These results were further validated using parallel reaction monitoring. Notably, pathways associated with cognitive function and cardiovascular health were adversely affected in T2D patients on metformin monotherapy but showed improvement with combination therapy. These results suggest that the combination of DPP4 and SGLT2is offers a therapeutic advantage, underscoring the importance of personalized treatment strategies in managing T2D complications. Summary: Type 2 diabetes (T2D) is a chronic metabolic disorder that contributes to the progression of cognitive impairment, cardiovascular diseases, and renal dysfunction. Cognitive decline in T2D patients can also increase the risk of developing neurological conditions like Alzheimer's disease. Recently developed antidiabetic drugs have shown promising cardiovascular and renal health effects, such as dipeptidyl peptidase 4 (DPP4) inhibitors and sodium-glucose cotransporter 2 (SGLT2) inhibitors (SGLT2is). However, the precise mechanisms by which these drugs influence biological pathways related to cognitive function and central nervous system (CNS) development remain unclear. In this study, we explored the impact of these newer antidiabetic drugs in combination with metformin, compared to metformin monotherapy and healthy controls, by investigating differentially expressed proteins and their role in cognitive processes. Our findings reveal that DPP4 and SGLT2is activate key biological pathways-such as synaptogenesis, insulin-like growth factor regulation, and neurovascular coupling-that are either suppressed or not enriched in the metformin-only group. These pathways are critical for maintaining and regulating CNS function and cognitive health.
2型糖尿病(T2D)是一种复杂的代谢紊乱疾病,在全球的患病率不断上升,会导致认知能力下降、心血管疾病和全身炎症等主要并发症。尽管T2D药物治疗的进展在解决这些并发症方面显示出了前景,但其潜在的保护机制仍不清楚,尤其是因为这些机制似乎独立于血糖控制。在本研究中,我们使用液相色谱-串联质谱(LC-MS/MS)进行了全面的蛋白质组学分析,以探索新型抗糖尿病药物,特别是二肽基肽酶4(DPP4)和钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂(SGLT2is)与T2D一线治疗药物二甲双胍联合使用时的分子效应。分析了76名个体的血清样本,包括16名健康受试者、32名单用二甲双胍治疗的T2D患者以及28名接受联合治疗的T2D患者。我们鉴定并定量了505种低丰度蛋白质,随后进行了统计分析和 Ingenuity 通路分析。我们的研究结果揭示了与突触形成、胰岛素样生长因子转运和神经血管耦合信号相关的关键生物学通路发生了显著变化。这些结果通过平行反应监测得到了进一步验证。值得注意的是,在单用二甲双胍治疗的T2D患者中,与认知功能和心血管健康相关的通路受到了不利影响,但联合治疗显示出改善。这些结果表明,DPP4和SGLT2is的联合使用具有治疗优势,强调了个性化治疗策略在管理T2D并发症中的重要性。总结:2型糖尿病(T2D)是一种慢性代谢紊乱疾病,会导致认知障碍、心血管疾病和肾功能障碍的进展。T2D患者的认知能力下降也会增加患阿尔茨海默病等神经系统疾病的风险。最近开发的抗糖尿病药物,如二肽基肽酶4(DPP4)抑制剂和钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂(SGLT2is),已显示出对心血管和肾脏健康有良好效果。然而,这些药物影响与认知功能和中枢神经系统(CNS)发育相关生物学通路的确切机制仍不清楚。在本研究中,我们通过研究差异表达蛋白质及其在认知过程中的作用,探讨了这些新型抗糖尿病药物与二甲双胍联合使用相比单用二甲双胍治疗和健康对照的影响。我们的研究结果表明,DPP4和SGLT2is激活了关键的生物学通路,如突触形成、胰岛素样生长因子调节和神经血管耦合,而这些通路在仅使用二甲双胍的组中要么受到抑制,要么未得到富集。这些通路对于维持和调节CNS功能及认知健康至关重要。