文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从机制到应用:纳米医学驱动的癌症治疗中的程序性细胞死亡途径

From mechanism to application: programmed cell death pathways in nanomedicine-driven cancer therapies.

作者信息

Zhang Zhan, Wu Yuanzhen, Liu Yanchen, Zhang Jingyu, Zhang Yan, Dai Yunlu, Liu Caigang

机构信息

Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.

Cancer Stem Cell and Translational Medicine Laboratory, Shengjing Hospital of China Medical University, Shenyang, China.

出版信息

Bioact Mater. 2025 Jul 1;52:773-809. doi: 10.1016/j.bioactmat.2025.06.052. eCollection 2025 Oct.


DOI:10.1016/j.bioactmat.2025.06.052
PMID:40677757
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12270071/
Abstract

Programmed cell death (PCD) plays a crucial role in preventing cancer initiation and progression. Among the diverse PCD pathways, cuproptosis, pyroptosis, and ferroptosis have garnered attention for their unique mechanisms, which not only directly eliminate tumor cells but also enhance anti-tumor immunity. However, the therapeutic efficacy of PCD inducers is often compromised by rapid compensatory pathways in tumor cells, accelerated drug metabolism, and a lack of specificity, which can result in severe side effects. Engineered nanomedicines offer distinct advantages by leveraging nanoscale physicochemical properties to optimize pharmacokinetics, efficacy, and safety in cancer therapy. These nanomedicines enable precise targeting of tumor cells while enhancing drug stability. Moreover, they can simultaneously activate multiple PCD pathways and integrate with conventional therapies to further amplify anti-tumor effects. This review systematically examines the pathophysiological roles, mechanisms, and therapeutic implications of cuproptosis, pyroptosis, and ferroptosis in cancer treatment, with an emphasis on their modulation by nanomedicines. It also explores the potential interactions among these PCD pathways and highlights recent advancements in nanomedicine-based combination therapies targeting multiple PCD mechanisms. Finally, the challenges, limitations, and prospects for the clinical translation and application of PCD-targeting nanomedicines are discussed.

摘要

程序性细胞死亡(PCD)在预防癌症的起始和进展中起着至关重要的作用。在多种PCD途径中,铜死亡、焦亡和铁死亡因其独特的机制而受到关注,这些机制不仅能直接消除肿瘤细胞,还能增强抗肿瘤免疫力。然而,PCD诱导剂的治疗效果常常受到肿瘤细胞中快速补偿途径、加速的药物代谢以及缺乏特异性的影响,这可能导致严重的副作用。工程纳米药物通过利用纳米级物理化学性质来优化癌症治疗中的药代动力学、疗效和安全性,具有明显的优势。这些纳米药物能够精确靶向肿瘤细胞,同时提高药物稳定性。此外,它们可以同时激活多种PCD途径,并与传统疗法相结合,进一步放大抗肿瘤效果。本综述系统地研究了铜死亡、焦亡和铁死亡在癌症治疗中的病理生理作用、机制和治疗意义,重点关注它们被纳米药物调节的情况。它还探讨了这些PCD途径之间的潜在相互作用,并强调了基于纳米药物的针对多种PCD机制的联合疗法的最新进展。最后,讨论了靶向PCD的纳米药物临床转化和应用面临的挑战、局限性和前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/acae804f75a6/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/f8d3911e4754/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/1539999b2415/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/338e12d09fbb/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/d7b8e121647f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/5f8e288c1f54/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/92577e33ff22/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/c274e17f4b76/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/464bb9952f07/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/7fe8241edc84/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/988a0efbe329/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/2951daab623a/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/3718e272f499/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/7ae147a2ec5d/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/25e34c968c2c/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/acae804f75a6/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/f8d3911e4754/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/1539999b2415/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/338e12d09fbb/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/d7b8e121647f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/5f8e288c1f54/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/92577e33ff22/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/c274e17f4b76/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/464bb9952f07/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/7fe8241edc84/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/988a0efbe329/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/2951daab623a/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/3718e272f499/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/7ae147a2ec5d/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/25e34c968c2c/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/520d/12270071/acae804f75a6/gr14.jpg

相似文献

[1]
From mechanism to application: programmed cell death pathways in nanomedicine-driven cancer therapies.

Bioact Mater. 2025-7-1

[2]
Short-Term Memory Impairment

2025-1

[3]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[4]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[5]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[6]
Molecular subtypes of lung adenocarcinoma patients for prognosis and therapeutic response prediction with machine learning on 13 programmed cell death patterns.

J Cancer Res Clin Oncol. 2023-10

[7]
Sexual Harassment and Prevention Training

2025-1

[8]
Regulating nanomedicines: challenges, opportunities, and the path forward.

Nanomedicine (Lond). 2025-8

[9]
Systemic treatments for metastatic cutaneous melanoma.

Cochrane Database Syst Rev. 2018-2-6

[10]
Revolutionizing breast cancer treatment: Harnessing the related mechanisms and drugs for regulated cell death (Review).

Int J Oncol. 2024-5

本文引用的文献

[1]
Regulatory T cells in the tumour microenvironment.

Nat Rev Cancer. 2025-6-10

[2]
Self-assembling protein nanoparticles for cytosolic delivery of nucleic acids and proteins.

Nat Biotechnol. 2025-5-15

[3]
Endogenous/exogenous dual-responsive nanozyme for photothermally enhanced ferroptosis-immune reciprocal synergistic tumor therapy.

Sci Adv. 2025-5-16

[4]
One-Step Symbiosis of Bimetallic Peroxides Nanoparticles to Induce Ferroptosis/Cuproptosis and Activate cGAS-STING Pathway for Enhanced Tumor Immunotherapy.

Adv Mater. 2025-5

[5]
Programmed enhancement of endogenous iron-mediated lysosomal membrane permeabilization for tumor ferroptosis/pyroptosis dual-induction.

Nat Commun. 2025-3-28

[6]
Molecular classification of hormone receptor-positive /HER2-positive breast cancer reveals potential neoadjuvant therapeutic strategies.

Signal Transduct Target Ther. 2025-3-26

[7]
Silk Fibroin Nanoparticles for Enhanced Cuproptosis and Immunotherapy in Pancreatic Cancer Treatment.

Adv Sci (Weinh). 2025-5

[8]
Hypoxia inducible factor-1α drives cancer resistance to cuproptosis.

Cancer Cell. 2025-5-12

[9]
Plasma Membrane Targeted Photodynamic Nanoagonist to Potentiate Immune Checkpoint Blockade Therapy by Initiating Tumor Cell Pyroptosis and Depleting Infiltrating B Cells.

Adv Mater. 2025-4

[10]
Living Microalgae-Based Magnetic Microrobots for Calcium Overload and Photodynamic Synergetic Cancer Therapy.

Adv Healthc Mater. 2025-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索