Suppr超能文献

键合直链淀粉[(S)-α-甲基苄基氨基甲酸酯]柱(CHIRALPAK IH)上五种喹诺酮类药物的手性拆分与分子模拟及其识别机制的阐释

Chiral Separation and Molecular Simulation of Five Quinolones on a Bonded Amylose[(S)-α-Methylbenzyl Carbamate] Column (CHIRALPAK IH) and the Elucidation of Its Recognition Mechanism.

作者信息

Chen Xiangwen, Chen Xuan, Pan Juan, Deng Shuqi, Qin Qiubing, Fu Qiang, Cao Jiliang

机构信息

School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China.

College of Pharmacy, Shenzhen Technology University, Shenzhen, China.

出版信息

Chirality. 2025 Aug;37(8):e70050. doi: 10.1002/chir.70050.

Abstract

In this work, the silica gel bonded amylose[(S)-α-methylbenzyl carbamate] (CHIRALPAK IH) was chosen as the chiral stationary phase (CSP) for the separation of five quinolone enantiomers by high-performance liquid chromatography (HPLC), namely, ofloxacin, flumequine, nadifloxacin, lomefloxacin, and clinafloxacin. The mobile phase composition, organic modifier, and acid-base additive were systematically investigated for the baseline separation of these five interested quinolones. The optimized mobile phases were n-hexane-ethanol-acetic acid-diethylamine (60:40:0.2:0.2, v/v/v/v) for ofloxacin and nadifloxacin, n-hexane-ethanol-acetic acid-diethylamine (60:40:0.2:0.2, v/v/v/v) for flumequine, n-hexane-isopropanol-acetic acid-diethylamine (60:40:0.3:0.3, v/v/v/v) for lomefloxacin, and n-hexane-ethanol-acetic acid-diethylamine (70:30:0.3:0.3, v/v/v/v) for clinafloxacin. The interaction forces between the amylose CSP and target quinolones were simulated by computerized molecular docking to study their enantiorecognition mechanisms. The results indicated that hydrogen bonding, π-π stacking, and hydrophobic interactions collectively contributed to the stereoselective binding. The differences in these interaction forces between the quinolone enantiomers, particularly the greater contribution of hydrogen bonding in one enantiomer compared to the other, led to a significant difference in binding energy. This differential binding energy ultimately governed the elution order and enabled chiral recognition of the five quinolone enantiomers.

摘要

在本研究中,选用硅胶键合直链淀粉[(S)-α-甲基苄基氨基甲酸酯](CHIRALPAK IH)作为手性固定相(CSP),通过高效液相色谱(HPLC)分离5种喹诺酮对映体,即氧氟沙星、氟甲喹、那氟沙星、洛美沙星和克林沙星。系统研究了流动相组成、有机改性剂和酸碱添加剂,以实现这5种目标喹诺酮的基线分离。优化后的流动相为:用于氧氟沙星和那氟沙星的正己烷-乙醇-乙酸-二乙胺(60:40:0.2:0.2,v/v/v/v)、用于氟甲喹的正己烷-乙醇-乙酸-二乙胺(60:40:0.2:0.2,v/v/v/v)、用于洛美沙星的正己烷-异丙醇-乙酸-二乙胺(60:40:0.3:0.3,v/v/v/v)以及用于克林沙星的正己烷-乙醇-乙酸-二乙胺(70:30:0.3:0.3,v/v/v/v)。通过计算机分子对接模拟直链淀粉CSP与目标喹诺酮之间的相互作用力,以研究它们的对映体识别机制。结果表明,氢键、π-π堆积和疏水相互作用共同促成了立体选择性结合。喹诺酮对映体之间这些相互作用力的差异,特别是一种对映体中氢键的贡献比另一种更大,导致结合能存在显著差异。这种差异结合能最终决定了洗脱顺序,并实现了5种喹诺酮对映体的手性识别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验