Li Binjun, Golovynska Iuliia, Stepanov Yurii V, Golovynskyi Sergii, Golovynskyi Andrii, Kolesnik Denis, Stepanova Liudmyla I, Lai Puxiang, Lin Fangrui, Qu Junle
College of Physics and Optoelectronic Engineering, Center for Biomedical Photonics, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, P. R. China.
R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine, Kyiv, Ukraine.
PLoS One. 2025 Jul 18;20(7):e0326881. doi: 10.1371/journal.pone.0326881. eCollection 2025.
Light therapy, using red and near-infrared (NIR) irradiation, is currently applied for the treatment of various neurodegenerative diseases, such as Alzheimer's disease (AD). Transcranial photobiomodulation therapy (tPBMT) can alleviate neurodegeneration, neuronal loss, and β-amyloid peptide plaque burden. Alternatively, potential early inhibition of oxidative stress, neuroinflammation, apoptosis, and amyloidogenic cellular pathways may constrain pathological changes with aging. In this research, we conduct an 808-nm tPBMT with a 30-day course of daily 1-hour sessions for mice and assess its influence on molecular mechanisms related to the potential onset of neurodegeneration. To comprehensively identify molecular mechanisms of tPBMT on the brain cells, the next-generation whole RNA sequencing of over 30,000 mRNA of the cortex and hippocampus of BALB/c mice is performed. After tPBMT, transcriptional alterations are found in 1,005 genes in the hippocampus and 1,482 genes in the cortex. Pathway-gene enrichment network analysis identifies genes associated with about 20 pathways of neurodegeneration, and a disease-gene network is constructed. Particularly, tPBMT alters the transcription and expression of the essential genes associated with oxidative stress (NF-κBIα, JUN, JUND, and PKC genes), inflammation (DOCK4/6, IL-1RAPL1, and TNFαIP6), and apoptosis (CASP3, TNFαIP6, AKT3, CDKN1A, CYP51, RASA2, and RESTAT). Additionally, 808-nm light modulates the main risk genes for AD (BACE1, BACE2, PSEN2, APH1B, GATA2, YY2, RELA, STAT3, JUN, JUND, ARNTL, CREB3L1, CELF2, E2F4, ELK3, and CEBPD), involved in APP processing supporting AD development. Moreover, the APP concentration is reduced after tPBMT. Hence, PBMT may help inhibit the development of different neurodegeneration types and maintain normal brain conditions.
光疗法,即使用红光和近红外(NIR)照射,目前被应用于治疗各种神经退行性疾病,如阿尔茨海默病(AD)。经颅光生物调节疗法(tPBMT)可以减轻神经退行性变、神经元丢失和β-淀粉样肽斑块负担。另外,对氧化应激、神经炎症、细胞凋亡和淀粉样蛋白生成细胞途径的潜在早期抑制可能会抑制衰老过程中的病理变化。在本研究中,我们对小鼠进行为期30天、每天1小时的808纳米tPBMT,并评估其对与神经退行性变潜在发病相关分子机制的影响。为了全面鉴定tPBMT对脑细胞的分子机制,我们对BALB/c小鼠的皮质和海马中超过30000种mRNA进行了下一代全RNA测序。tPBMT后,在海马中的1005个基因和皮质中的1482个基因中发现了转录改变。通路-基因富集网络分析确定了与约20种神经退行性变途径相关的基因,并构建了疾病-基因网络。特别地,tPBMT改变了与氧化应激(NF-κBIα、JUN、JUND和PKC基因)、炎症(DOCK4/6、IL-1RAPL1和TNFαIP6)和细胞凋亡(CASP3、TNFαIP6、AKT3、CDKN1A、CYP51、RASA2和RESTAT)相关的关键基因的转录和表达。此外,808纳米光调节AD的主要风险基因(BACE1、BACE2、PSEN2、APH1B、GATA2、YY2、RELA、STAT3、JUN、JUND、ARNTL、CREB3L1、CELF2、E2F4、ELK and CEBPD),这些基因参与支持AD发展的APP加工过程。此外,tPBMT后APP浓度降低。因此,PBMT可能有助于抑制不同类型神经退行性变的发展并维持大脑的正常状态。