Suppr超能文献

用于近红外光动力疗法的金增强镧系纳米药物

Gold-Enhanced Lanthanide Nanomedicine for Near-Infrared Photodynamic Therapy.

作者信息

Ali Sajid, Hou Wei, Wang Ziqi, Song Yujun

机构信息

Center for Modern Physics Technology, School of Mathematics and Physics, University of Science & Technology Beijing, Beijing 100083, China.

Zhengzhou Tianzhao Biomedical Technology Company Ltd, New Technology Industrial Development Zone, &B-1209 Dongqing Street, Zhengzhou 451450, China.

出版信息

Langmuir. 2025 Jul 29;41(29):18965-18985. doi: 10.1021/acs.langmuir.5c01514. Epub 2025 Jul 20.

Abstract

Cancer remains a major global health challenge due to its high morbidity and mortality rates. Traditional treatments, such as surgery, radiotherapy, and chemotherapy, have some clear limitations, which is why there is a growing need for innovative therapeutic modalities. One precise targeting of tumors with few side effects can be achieved through a promising modality called photodynamic therapy (PDT). PDT is a noninvasive cancer treatment that uses photosensitizers to produce cytotoxic species that selectively kill cancer cells under light exposure. In recent years, a variety of nanoparticles (NPs) have been developed. Among them, gold-doped lanthanide NPs (Au-Ln NPs) stand out as a significant advancement in PDT due to the integration of the surface plasmon resonance (LSPR) properties of AuNPs and upconversion (UC) luminescence of Ln NPs. In this perspective, we review various synthesis methods for upconversion nanoparticles (UCNPs) and gold nanoparticles (AuNPs), highlighting their integration into multifunctional Au-Ln NPs for enhanced PDT. By using near-infrared (NIR) light, Au-Ln UCNPs can penetrate deep into tissues, making them particularly effective for treating deeply seated tumors. However, the synthesis of Au-Ln NPs comes with its own challenges. The main challenges include the uniform distribution of gold doping, the control of the particle size and shape, and the reproducibility as well as scalability. Overcoming these challenges for controlled synthesis and enhanced PDT will be critical. Correspondingly, their PDT applications are discussed in vitro and in vivo. Lastly, the current challenges, limitations, and future prospects will be explored.

摘要

由于癌症的高发病率和死亡率,它仍然是全球主要的健康挑战。传统治疗方法,如手术、放疗和化疗,存在一些明显的局限性,这就是为什么对创新治疗方式的需求日益增长。一种有望实现对肿瘤精确靶向且副作用小的方法是光动力疗法(PDT)。PDT是一种非侵入性癌症治疗方法,它使用光敏剂产生细胞毒性物质,在光照下选择性杀死癌细胞。近年来,已经开发出了多种纳米颗粒(NPs)。其中,金掺杂镧系纳米颗粒(Au-Ln NPs)由于结合了金纳米颗粒的表面等离子体共振(LSPR)特性和镧系纳米颗粒的上转换(UC)发光,在PDT方面取得了显著进展。从这个角度出发,我们综述了上转换纳米颗粒(UCNPs)和金纳米颗粒(AuNPs)的各种合成方法,重点介绍了它们整合到多功能Au-Ln NPs中以增强PDT的情况。通过使用近红外(NIR)光,Au-Ln UCNPs可以深入组织,使其在治疗深部肿瘤方面特别有效。然而,Au-Ln NPs的合成也面临着自身的挑战。主要挑战包括金掺杂的均匀分布、颗粒尺寸和形状的控制以及可重复性和可扩展性。克服这些挑战以实现可控合成和增强PDT至关重要。相应地,我们讨论了它们在体外和体内的PDT应用。最后,我们将探讨当前的挑战、局限性和未来前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验