Zhang Bo, Yin Yumengmeng, Ma Kefu, Wang Hong
China Coal Research Institute Corporation, Beijing, 100013, China.
School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
Sci Rep. 2025 Jul 21;15(1):26397. doi: 10.1038/s41598-025-10594-x.
In the maritime industry, accurately detecting a ship's draft line is crucial for ensuring transaction fairness and navigational safety. Existing deep learning-based methods for draft line detection primarily use segmentation techniques to segment the entire body of water before determining the waterline. These approaches incur high computational costs and often face challenges under varying environmental conditions, such as lighting changes and different hull colors. To address these issues, we propose multi-scale feature fusion keypoint detection network (MFFKD) for precise and efficient ship draft line detection. Our network integrates four stages of Dilated Residual-Channel Recalibration Module (DR-CRM) blocks to extract multi-scale features. Meanwhile, the Feature Enhancement Extraction Modules (FEEM) are employed to enhance these extracted features, and the Multi-scale Feature Weighted Integration (MFWI) module efficiently fuses the enhanced multi-scale features. Furthermore, a task head for keypoint prediction is designed to ensure accurate localization of keypoints. By integrating the predicted keypoint data with mark information detected by the character recognition head through a mathematical model, we achieve precise predictions of waterline readings. To enhance the model's adaptability to various environmental conditions, we adopt a dual-phase training strategy: an initial pre-training phase for learning general ship features and waterline characteristics, followed by a fine-tuning phase using data from diverse scenes. Extensive experimental results show that our method surpasses the baseline models in waterline detection accuracy. In terms of model execution speed, our method exceeds the advanced segmentation-based approaches. These demonstrate the effectiveness of integrating keypoint detection with dual-phase training in ship waterline detection.
在海事行业中,精确检测船舶吃水线对于确保交易公平和航行安全至关重要。现有的基于深度学习的吃水线检测方法主要使用分割技术在确定水线之前对整个水体进行分割。这些方法计算成本高,并且在不同环境条件下(如光照变化和不同的船体颜色)常常面临挑战。为了解决这些问题,我们提出了用于精确高效船舶吃水线检测的多尺度特征融合关键点检测网络(MFFKD)。我们的网络集成了四个阶段的扩张残差通道重新校准模块(DR-CRM)块来提取多尺度特征。同时,采用特征增强提取模块(FEEM)来增强这些提取的特征,并且多尺度特征加权集成(MFWI)模块有效地融合增强后的多尺度特征。此外,设计了一个用于关键点预测的任务头,以确保关键点的精确定位。通过一个数学模型将预测的关键点数据与字符识别头检测到的标记信息相结合,我们实现了水线读数的精确预测。为了提高模型对各种环境条件的适应性,我们采用双阶段训练策略:一个初始预训练阶段用于学习一般船舶特征和水线特征,随后是一个使用来自不同场景的数据进行微调的阶段。大量实验结果表明,我们的方法在水线检测精度方面超过了基线模型。在模型执行速度方面,我们的方法超过了基于分割的先进方法。这些证明了在船舶水线检测中将关键点检测与双阶段训练相结合的有效性。