Suppr超能文献

基于二次分解和改进鹦鹉算法的月降水量预测

Monthly precipitation prediction based on quadratic decomposition and improved parrot algorithm.

作者信息

Zhang Weijie, Zeng Yuming, Zhou Shubo, Zhang Libin, Li Haiquan, Yao Zhongsheng, Zhou Rusheng

机构信息

School of Mechanical and Energy Engineering, Guangdong Ocean University, Yangjiang, 529500, China.

School of Computer Science and Engineering, Guangdong Ocean University, Yangjiang, 529500, China.

出版信息

Sci Rep. 2025 Jul 21;15(1):26503. doi: 10.1038/s41598-025-12493-7.

Abstract

The amount of precipitation directly affects the ecological balance and the economic benefits of the region. However, the highly nonlinear and stochastic nature of precipitation time series data limits the accuracy of predictions. Therefore, improving the prediction accuracy of regional precipitation is crucial for formulating disaster prevention and mitigation measures, as well as for responding to climate change. To achieve a scientific and effective prediction of regional precipitation, this study proposed a precipitation prediction model based on the CEEMDAN-TVMD-IPO-BiLSTM framework. The model first decomposed the original precipitation data using the CEEMDAN decomposition algorithm, output the modal components and residual components, and then used the topology optimization algorithm (TTAO) to optimize the VMD, and decomposed the high-dimensional sequence in the first decomposition result for the second time. An improved parrot optimizer (IPO) algorithm based on chaotic Cat and Cauchy-Gaussian variation was introduced to optimize the bidirectional long short-term memory neural network (BiLSTM). This precisely constructed prediction model was utilized to predict regional precipitation, with historical monthly precipitation data from three representative cities in China-Guangzhou in the east region, Changsha in the central region, and Emeishan in the west region-used to validate the model's accuracy and robustness. Experimental results indicated that the proposed CEEMDAN-TVMD-IPO-BiLSTM model achieved RMSE values of 32.373, 14.445, and 22.447 for the three cities, respectively, with corresponding R² values of 0.960, 0.972, and 0.977, outperforming other models. This demonstrated its advantages in monthly precipitation prediction, allowing for a better characterization of precipitation fluctuation patterns and providing scientific references for formulating policies to combat droughts and floods.

摘要

降水量直接影响着该地区的生态平衡和经济效益。然而,降水时间序列数据具有高度非线性和随机性,这限制了预测的准确性。因此,提高区域降水预测的准确性对于制定防灾减灾措施以及应对气候变化至关重要。为了实现对区域降水的科学有效预测,本研究提出了一种基于CEEMDAN-TVMD-IPO-BiLSTM框架的降水预测模型。该模型首先使用CEEMDAN分解算法对原始降水数据进行分解,输出模态分量和残差分量,然后使用拓扑优化算法(TTAO)对VMD进行优化,并对第一次分解结果中的高维序列进行二次分解。引入了一种基于混沌猫和柯西-高斯变异的改进鹦鹉优化器(IPO)算法来优化双向长短期记忆神经网络(BiLSTM)。利用这个精确构建的预测模型来预测区域降水,并使用中国三个代表性城市(东部的广州、中部的长沙和西部的峨眉山)的历史月降水数据来验证模型的准确性和稳健性。实验结果表明,所提出的CEEMDAN-TVMD-IPO-BiLSTM模型在这三个城市的RMSE值分别为32.373、14.445和22.447,相应的R²值分别为0.960、0.972和0.977,优于其他模型。这证明了其在月降水预测方面的优势,能够更好地表征降水波动模式,并为制定抗旱防洪政策提供科学参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/161e/12280056/4b1dd53f06ce/41598_2025_12493_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验