Lu Xinyue, Ji Lianhong, Chen Dong, Lian Xiaoyang, Yuan Mengqian
Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, People's Republic of China.
Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People's Republic of China.
Diabetes Metab Syndr Obes. 2025 Jul 17;18:2399-2415. doi: 10.2147/DMSO.S528669. eCollection 2025.
Obesity is a major global public health issue linked to a wide range of chronic diseases. Understanding its complex causal pathways requires robust analytical methods. Mendelian randomization (MR), which employs genetic variants as instrumental variables, effectively addresses confounding and reverse causation and has become a key tool in obesity research. This review summarizes the development of MR methodologies, from single-sample to multivariable, mediation, and time-series models, and highlights key findings from the past decade. MR studies have revealed causal associations between obesity and nine major disease categories, including cardiovascular, metabolic, cancer, psychiatric, respiratory, renal, reproductive, musculoskeletal, and dermatological disorders. Obesity influences disease risk through mechanisms involving energy metabolism, hormonal regulation, and inflammation, with heterogeneity by age, sex, and fat distribution. Key genes such as , and have been identified as potential therapeutic targets. Current challenges include instrument strength, pleiotropy, population stratification, and the external validity of GWAS data. Future research that integrates multi-ancestry GWAS, functional validation, and multi-omics approaches may further enhance the utility of Mendelian randomization. MR provides a robust genetic framework for elucidating obesity's causal effects and informing targeted interventions and personalized treatment strategies.
肥胖是一个全球性的重大公共卫生问题,与多种慢性疾病相关。了解其复杂的因果途径需要强大的分析方法。孟德尔随机化(MR)利用基因变异作为工具变量,有效解决了混杂因素和反向因果关系问题,已成为肥胖研究的关键工具。本综述总结了MR方法从单样本到多变量、中介和时间序列模型的发展,并强调了过去十年的关键发现。MR研究揭示了肥胖与九大类主要疾病之间的因果关联,包括心血管、代谢、癌症、精神、呼吸、肾脏、生殖、肌肉骨骼和皮肤疾病。肥胖通过涉及能量代谢、激素调节和炎症的机制影响疾病风险,且存在年龄、性别和脂肪分布的异质性。已确定 、 和 等关键基因作为潜在治疗靶点。当前的挑战包括工具强度、多效性、群体分层以及全基因组关联研究(GWAS)数据的外部有效性。整合多祖先GWAS、功能验证和多组学方法的未来研究可能会进一步提高孟德尔随机化的效用。MR为阐明肥胖的因果效应以及为靶向干预和个性化治疗策略提供信息提供了一个强大的遗传框架。
Diabetes Metab Syndr Obes. 2025-7-17
Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi. 2025-6-20
Arch Ital Urol Androl. 2025-6-30
Exp Mol Pathol. 2025-3
Signal Transduct Target Ther. 2024-11-26
Medicine (Baltimore). 2024-9-6
Aging Clin Exp Res. 2024-8-22
Arthritis Care Res (Hoboken). 2024-11