Fisher Paul, Zappacosta Alexander, Fuhrmann Jens, Haylock Benjamin, Gao Weibo, Nagy Roland, Jelezko Fedor, Cernansky Robert
Institute for Quantum Optics, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany.
School of Electrical & Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
Nano Lett. 2025 Jul 30;25(30):11626-11631. doi: 10.1021/acs.nanolett.5c02515. Epub 2025 Jul 22.
High-resolution nanoscale nuclear magnetic resonance (NMR) allows measurement of chemical structure at the single-molecule level for determining molecular dynamics. Until now, nitrogen vacancy centers in diamond have been the only platform to demonstrate single-defect NMR sensing at sub-Hz spectral resolution. Using a single silicon vacancy defect prepared under CMOS-compatible conditions in commercial 4H-silicon carbide at room temperature, we use the Synchronized Readout technique to measure a test signal. We achieve a spectral resolution of 0.33 Hz, necessary for understanding molecular structure, and estimate a magnetic sensitivity of 358 μT/ for our system. We also explore the necessary improvements for achieving single-proton spin sensitivity. Combining these results with future integrated photonics shows a promising path toward scalable nanoscale sensing for low-cost NMR spectrometers based on an industry-mature silicon carbide material.
高分辨率纳米级核磁共振(NMR)能够在单分子水平上测量化学结构,以确定分子动力学。到目前为止,金刚石中的氮空位中心一直是唯一能在亚赫兹光谱分辨率下展示单缺陷NMR传感的平台。我们在室温下于商用4H碳化硅中利用互补金属氧化物半导体(CMOS)兼容条件制备了单个硅空位缺陷,并使用同步读出技术测量测试信号。我们实现了0.33赫兹的光谱分辨率,这对于理解分子结构是必要的,并估计我们系统的磁灵敏度为358μT/ 。我们还探索了实现单质子自旋灵敏度所需的改进措施。将这些结果与未来的集成光子学相结合,为基于工业成熟的碳化硅材料的低成本NMR光谱仪实现可扩展的纳米级传感展示了一条充满希望的道路。