Suppr超能文献

用于长波红外辐射的非局域超表面透镜

Nonlocal Metasurface Lens for Long-Wavelength Infrared Radiation.

作者信息

De Luca Federico, Guddala Sriram, Cotrufo Michele, Touma Jimmy, Overvig Adam, Alù Andrea

机构信息

Photonics Initiative, Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY, 10031, USA.

The Institute of Optics, University of Rochester, Rochester, NY, 14627, USA.

出版信息

Adv Mater. 2025 Jul 22:e07848. doi: 10.1002/adma.202507848.

Abstract

Dielectric metasurfaces are structured thin films with a thickness smaller than the operating wavelength aiming at replacing and enhancing conventional bulk optical components. At visible and near-infrared frequencies, titania or silicon is routinely used as substrates to realize these ultrathin devices by structuring local resonances across an aperture. Unfortunately, directly scaling the same design and material approaches to long-wave infrared frequencies is unpractical, due to the resulting thickness and the presence of phonon absorption lines. Nonlocal metasurfaces based on extended resonances with a local geometric phase provide a compelling design platform that can address these challenges, they enable ultrathin metasurfaces and offer multi-functionalities, polarization- and frequency-selectivity, and can be implemented in several low-loss material platforms. Here, nonlocal metalenses are demonstrated based on germanium thin films on a zinc-selenide substrate, operating at ≈10.3µm within a deeply subwavelength device thickness of 1.45µm (14% the free-space wavelength). A novel meta-unit geometry is showcased based on a square lattice with highly isotropic dispersion features, supporting a resonant geometric phase that is highly stable in frequency, simplifying the rational design of complex metasurface operations. The introduced platform promises multi-functional, low-profile meta-optics with enhanced meta-unit designs, compatible with the challenging thermal spectral region for imaging and sensing applications.

摘要

介电超表面是一种结构薄膜,其厚度小于工作波长,旨在替代和增强传统的块状光学元件。在可见光和近红外频率下,二氧化钛或硅通常用作衬底,通过在孔径上构建局部共振来实现这些超薄器件。不幸的是,由于由此产生的厚度和声子吸收线的存在,将相同的设计和材料方法直接扩展到长波红外频率是不切实际的。基于具有局部几何相位的扩展共振的非局部超表面提供了一个引人注目的设计平台,可以应对这些挑战,它们实现了超薄超表面并提供了多功能性、偏振和频率选择性,并且可以在几种低损耗材料平台中实现。在此,展示了基于硒化锌衬底上的锗薄膜的非局部金属透镜,其在≈10.3μm波长下工作,器件厚度为1.45μm,处于深亚波长范围(为自由空间波长的14%)。展示了一种基于具有高度各向同性色散特性的方形晶格的新型元单元几何结构,其支持在频率上高度稳定的共振几何相位,简化了复杂超表面操作的合理设计。所引入的平台有望实现具有增强元单元设计的多功能、低剖面元光学,与成像和传感应用中具有挑战性的热光谱区域兼容。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验