Dewey James B
Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2505176122. doi: 10.1073/pnas.2505176122. Epub 2025 Jul 22.
Mammalian hearing sensitivity depends on the amplification of sound-induced cochlear vibrations by outer hair cells (OHCs). OHCs transduce deflections of their stereociliary bundles into receptor potentials that drive changes in cell length. While fast, phasic OHC length changes are thought to generate the forces that underlie cochlear amplification, OHCs also exhibit large tonic length changes in response to sound. These tonic length changes could theoretically arise from asymmetries in the mechanotransduction process that lead to tonic changes in membrane potential, though their exact origins and functional significance are uncertain. Here, in vivo cochlear vibration measurements reveal that sound can elicit tonic OHC motility in mice with stereociliary defects that eliminate cochlear amplification and presumably impair mechanotransduction. Tonic OHC motility in impaired mice was physiologically vulnerable but only weakly correlated with any residual phasic motility, suggesting a possible dissociation between the underlying mechanisms. Nevertheless, a simple model demonstrates how realistic changes to the OHC mechanotransducer function in impaired mice can lead to small but strongly asymmetric receptor potentials, producing sizable tonic length changes in the absence of any detectable phasic motility. Tonic OHC motility is therefore not a unique feature of sensitive ears and is the dominant active mechanical response in ears with certain types of deafness. Whether such tonic responses play a functional role in the normal or impaired cochlea remains to be determined.
哺乳动物的听觉敏感性取决于外毛细胞(OHCs)对声音诱发的耳蜗振动的放大作用。OHCs将其静纤毛束的偏转转化为受体电位,从而驱动细胞长度的变化。虽然快速的、相位性的OHC长度变化被认为产生了耳蜗放大作用的基础力量,但OHCs也会对声音表现出较大的紧张性长度变化。理论上,这些紧张性长度变化可能源于机械转导过程中的不对称性,导致膜电位的紧张性变化,但其确切起源和功能意义尚不确定。在这里,体内耳蜗振动测量显示,声音可以在具有静纤毛缺陷的小鼠中引发紧张性OHC运动,这些缺陷消除了耳蜗放大作用,并可能损害机械转导。受损小鼠中的紧张性OHC运动在生理上很脆弱,但与任何残余的相位性运动仅有微弱的相关性,这表明潜在机制之间可能存在分离。然而,一个简单的模型展示了受损小鼠中OHC机械转导功能的实际变化如何导致微小但强烈不对称的受体电位,在没有任何可检测到的相位性运动的情况下产生相当大的紧张性长度变化。因此,紧张性OHC运动不是敏感耳朵的独特特征,而是某些类型耳聋耳朵中的主要主动机械反应。这种紧张性反应在正常或受损耳蜗中是否发挥功能作用仍有待确定。