一种基于图像的计算框架,用于通过高分辨率磁共振成像评估动脉组织的材料刚度。
An Image-Based Computational Framework to Evaluate the Material Stiffness of Arterial Tissue With High-Resolution Magnetic Resonance Imaging.
作者信息
Wang Y F Jack, Ferruzzi Jacopo, Yeoh Stewart, Merchant Samer S, Maas Steve A, Weiss Jeffrey A, Hsu Edward W, Timmins Lucas H
机构信息
Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112; 2121 West Holcombe Boulevard, Alkek Building, Room 503, Houston, TX 77030.
Texas A&M University.
出版信息
J Biomech Eng. 2025 Sep 1;147(9). doi: 10.1115/1.4069209.
Atherosclerotic plaque rupture is the precipitating event in most acute coronary syndromes. As rupture results from the material failure of arterial tissue under mechanical loading, in vivo image-based techniques that can accurately characterize arterial material stiffness offer potential in risk-stratifying lesions. This study developed and validated a novel magnetic resonance (MR) image-based computational framework to evaluate the material stiffness of vascular tissue. Porcine carotid arteries (n = 4) were subjected to biaxial mechanical testing, followed by MR image acquisition under controlled loading. Best-fit material parameters for an anisotropic material model were estimated via regression analysis on the biaxial data. A deformable image registration technique, termed hyperelastic warping, was utilized to derive strain fields from the MR images and integrated with an inverse parameter estimation algorithm to identify the parameters for the same constitutive model. Experimentally and warping-estimated material stiffness values (tangent moduli) were not significantly different at physiologic lumen pressures of 80 (0.36 ± 0.15 and 0.48 ± 0.20 MPa; p = 0.14) and 120 mmHg (0.64 ± 0.27 and 0.73 ± 0.36 MPa; p = 0.60). The warping-directed inverse modeling framework identified subtle, but observable variations in material stiffness within a sample and accurately illustrated the physical influence of loading conditions on those properties. Collectively, these results demonstrated the robustness of an innovative approach to characterize nonlinear, hyperelastic behaviors of arterial tissue and quantify material stiffness directly from image data.
动脉粥样硬化斑块破裂是大多数急性冠脉综合征的诱发事件。由于破裂是动脉组织在机械负荷下发生材料失效所致,能够准确表征动脉材料硬度的基于体内成像的技术在对病变进行风险分层方面具有潜力。本研究开发并验证了一种基于磁共振(MR)图像的新型计算框架,以评估血管组织的材料硬度。对猪颈动脉(n = 4)进行双轴力学测试,随后在控制负荷下采集MR图像。通过对双轴数据进行回归分析,估计各向异性材料模型的最佳拟合材料参数。利用一种称为超弹性扭曲的可变形图像配准技术从MR图像中导出应变场,并与逆参数估计算法相结合,以确定同一本构模型的参数。在80(0.36±0.15和0.48±0.20MPa;p = 0.14)和120mmHg(0.64±0.27和0.73±0.36MPa;p = 0.60)的生理管腔压力下,实验测量值和通过扭曲估计的材料硬度值(切线模量)无显著差异。基于扭曲的逆建模框架识别出样本内材料硬度的细微但可观察到的变化,并准确说明了负荷条件对这些特性的物理影响。总体而言,这些结果证明了一种创新方法的稳健性,该方法可表征动脉组织的非线性、超弹性行为,并直接从图像数据中量化材料硬度。
相似文献
Cochrane Database Syst Rev. 2018-1-22
J Biomed Mater Res B Appl Biomater. 2024-8
JBJS Essent Surg Tech. 2025-8-15
本文引用的文献
Radiology. 2023-5
Cardiovasc Diagn Ther. 2020-10
JACC Cardiovasc Imaging. 2020-12
J Mech Behav Biomed Mater. 2020-1
Comput Biol Med. 2019-4-24