Peng Yumei, Fan Zhongmin, Wang Zi, Zhang Ziyun, Yan Yuxin, Shi Jia, Huo Chunpeng, Wang Xiang
Key Laboratory of Arable Land Conservation (North China), College of Land Science and Technology, China Agricultural University, Beijing 100193, PR China.
Environ Sci Technol. 2025 Aug 5;59(30):15792-15802. doi: 10.1021/acs.est.5c02856. Epub 2025 Jul 22.
Dissolved organic matter (DOM) is crucial to agricultural biogeochemical cycles, yet its molecule characteristics and interactions with microbial communities in eroding landscapes─particularly subsoil─are poorly understood. Using ultrahigh-resolution mass spectrometry and high-throughput sequencing, we investigated DOM and microbiota across weakly acidic silty loam topsoil (0-20 cm) and subsoil (80-100 cm) along eroding-depositional gradients in a maize-cropped Mollisol agroecosystem. The overall chemodiversity, composition, and complexity of the DOM molecule pool were higher in topsoil than subsoil, but their topographical differences were predominantly observed in the subsoil, indicating erosion-induced homogenization of surface molecular fingerprints. Depositional subsoil increased DOM molecular diversity and accumulated recalcitrant lignin/tannin compounds, contrasting lipid enrichment at the eroding subsoil. Thermodynamic analysis via substrate-explicit models confirmed reduced DOM bioavailability in depositional subsoil compared to its erosional counterpart. Across both soil layers, microbial α-diversity metrics declined at eroding sites but increased at depositional sites. Crucially, these metrics negatively correlated with the diversity and complexity of DOM molecules in the topsoil yet positively correlated in the subsoil. These divergent patterns reflect depth-dependent microbial strategies─surface microbes favored labile substrates, while subsurface specialists utilized complex compounds. Our findings highlight subsoil as a critical zone where erosion-deposition processes establish distinct DOM-microbe interfaces governing soil organic matter stabilization.
溶解有机物(DOM)对农业生物地球化学循环至关重要,然而,在侵蚀地貌(特别是底土)中,其分子特征以及与微生物群落的相互作用仍知之甚少。我们利用超高分辨率质谱和高通量测序技术,沿着侵蚀 - 沉积梯度,对种植玉米的软土农业生态系统中弱酸性粉质壤土表土(0 - 20厘米)和底土(80 - 100厘米)中的DOM和微生物群进行了研究。DOM分子库的整体化学多样性、组成和复杂性在表土中高于底土,但它们的地形差异主要出现在底土中,这表明侵蚀导致了表面分子指纹的同质化。沉积底土增加了DOM分子多样性,并积累了难降解的木质素/单宁化合物,这与侵蚀底土中的脂质富集形成对比。通过底物明确模型进行的热力学分析证实,与侵蚀性底土相比,沉积性底土中DOM的生物有效性降低。在两个土层中,微生物α多样性指标在侵蚀位点下降,但在沉积位点增加。至关重要的是,这些指标与表土中DOM分子的多样性和复杂性呈负相关,而在底土中呈正相关。这些不同的模式反映了深度依赖的微生物策略——表层微生物偏好易分解的底物,而地下的微生物则利用复杂的化合物。我们的研究结果突出了底土作为一个关键区域,在这个区域,侵蚀 - 沉积过程建立了不同的DOM - 微生物界面,从而控制土壤有机质的稳定。