Suppr超能文献

来自……的高丝氨酸乙酰转移酶的机制洞察

Mechanistic Insights into Homoserine -Acetyltransferase from .

作者信息

Jiao Wanting, Mittelstädt Gerd, Richardson Alistair T, Allison Timothy M, Berney Michael, Parker Emily J

机构信息

Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand.

Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag, Auckland 92019, New Zealand.

出版信息

Biochemistry. 2025 Aug 5;64(15):3299-3310. doi: 10.1021/acs.biochem.5c00089. Epub 2025 Jul 22.

Abstract

The enzyme MetX is a homoserine -acetyltransferase that catalyzes the first step in methionine biosynthesis and is essential for survival and virulence of various pathogens. It is an attractive target for antifungal and antibacterial drug development. MetX catalyzes the acetyl transfer from acetyl-CoA (AcCoA) to homoserine via a ping-pong mechanism involving an acyl-enzyme intermediate. The active site contains a Ser-His-Asp catalytic triad, which constitutes its core catalytic machinery. Here we investigated the mechanistic details of MetX from (MetX) using a combination of quantum mechanics/molecular mechanics (QM/MM) calculations, mutagenesis, and mass spectrometry. QM/MM calculations suggest that D320 of the catalytic triad participates in the proton transfer during homoserine acetylation, but not during acyl-enzyme formation. Experiments showed that a D320N substitution, which removes the proton-accepting capability of D320 as well as the p modulation of H350 by D320, still allowed acyl-enzyme formation at a markedly reduced rate, but significantly impaired the production of acetyl-homoserine. To isolate the effect of D320's participation in proton transfer from its p modulation role, we used QM/MM calculations to simulate a system where D320 could modulate H350 p but not accept a proton. These calculations suggest that while D320's proton-accepting role is not required for the AcCoA reaction, it contributes thermodynamically in the homoserine reaction by lowering the energy of the forward pathway. Elucidating the mechanistic details of MetX reactions offers valuable insights that will facilitate the development of mechanism-based inhibitors, contributing to future therapeutic strategies.

摘要

MetX酶是一种高丝氨酸乙酰转移酶,催化甲硫氨酸生物合成的第一步,对多种病原体的生存和毒力至关重要。它是抗真菌和抗菌药物开发的一个有吸引力的靶点。MetX通过涉及酰基酶中间体的乒乓机制催化乙酰辅酶A(AcCoA)上的乙酰基转移至高丝氨酸。活性位点包含一个Ser-His-Asp催化三联体,构成其核心催化机制。在这里,我们结合量子力学/分子力学(QM/MM)计算、诱变和质谱研究了[具体物种]的MetX(MetX)的作用机制细节。QM/MM计算表明,催化三联体的D320在高丝氨酸乙酰化过程中参与质子转移,但在酰基酶形成过程中不参与。实验表明,D320N取代消除了D320的质子接受能力以及D320对H350的pKa调节,仍然允许酰基酶以显著降低的速率形成,但显著损害了乙酰高丝氨酸的产生。为了分离D320参与质子转移的作用与其pKa调节作用,我们使用QM/MM计算来模拟一个系统,其中D320可以调节H350的pKa但不接受质子。这些计算表明,虽然AcCoA反应不需要D320的质子接受作用,但它通过降低正向途径的能量在高丝氨酸反应中做出热力学贡献。阐明MetX反应的作用机制细节提供了有价值的见解,将有助于基于机制的抑制剂的开发,为未来的治疗策略做出贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验