Suppr超能文献

基于压电传感技术和形态分形方法的混凝土结构损伤检测研究

Research on concrete structure damage detection based on piezoelectric sensing technology and morphological fractal method.

作者信息

Zhong Hanqing, Shuai Liwei, Deng Dongmin

机构信息

School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, China.

Jiangxi Provincial Highway Research & Design Institute Co, Ltd, Nanchang, 330013, China.

出版信息

Sci Rep. 2025 Jul 22;15(1):26604. doi: 10.1038/s41598-025-11619-1.

Abstract

This study proposes a concrete piezoelectric sensing detection method based on mathematical morphology and fractal theory, which effectively monitors and quantitatively assesses the dynamic evolution process of damage cracks in concrete structures under impact loads. The main contents of this study are as follows: First, it establishes the mapping relationship between the dynamic evolution of damage cracks in concrete under impact loads and the characteristics of piezoelectric time-domain signals for the first time. Through systematic research on the evolution law of peak characteristic parameters of signals in each stage of crack propagation, the intrinsic correlation between the degree of damage and acoustic signals is revealed. Second, it systematically conducts morphological parameter analysis of piezoelectric sensing signals and calculates the morphological fractal dimension (MFD) of piezoelectric signals. Third, it innovatively constructs an intelligent structural damage recognition model integrating morphological fractal theory and artificial neural network (ANN), and conducts a systematic comparative analysis with the traditional wavelet packet transform (WPT) method, verifying the effectiveness of the proposed MFD-ANN intelligent recognition model in this paper. The research results show that the signal corrosion algorithm based on mathematical morphology can significantly enhance the contrast of the steepness characteristics of wave peaks at different damage stages, thereby more effectively capturing the self-similarity characteristics of signal waveforms. Compared with the traditional wavelet packet transform method, the intelligent recognition model established by integrating fractal features and neural networks has a higher recognition accuracy rate for the degree of damage.

摘要

本研究提出了一种基于数学形态学和分形理论的混凝土压电传感检测方法,可有效监测和定量评估冲击荷载作用下混凝土结构损伤裂缝的动态演化过程。本研究的主要内容如下:首先,首次建立了冲击荷载作用下混凝土损伤裂缝动态演化与压电时域信号特征之间的映射关系。通过对裂缝扩展各阶段信号峰值特征参数演化规律的系统研究,揭示了损伤程度与声信号之间的内在关联。其次,对压电传感信号进行了系统的形态学参数分析,并计算了压电信号的形态分形维数(MFD)。第三,创新性地构建了一种融合形态分形理论和人工神经网络(ANN)的智能结构损伤识别模型,并与传统小波包变换(WPT)方法进行了系统的对比分析,验证了本文所提MFD-ANN智能识别模型的有效性。研究结果表明,基于数学形态学的信号腐蚀算法能够显著增强不同损伤阶段波峰陡度特征的对比度,从而更有效地捕捉信号波形的自相似特征。与传统小波包变换方法相比,融合分形特征和神经网络建立的智能识别模型对损伤程度具有更高的识别准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5377/12284265/7513080af037/41598_2025_11619_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验