文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于卷积神经网络(CNN)并利用Grad-CAM进行龋齿检测的远程牙科诊断模型。

CNN-based remote dental diagnosis model for caries detection with grad-CAM.

作者信息

Kim Donghyeok, Kim Jangkyum, Choi Seong Gon

机构信息

Department of Data Science, Sejong University, Seoul, 05006, Republic of Korea.

Department of Artificial Intelligence and Data Science, Sejong University, Seoul, 05006, Republic of Korea.

出版信息

Sci Rep. 2025 Jul 22;15(1):26555. doi: 10.1038/s41598-025-11447-3.


DOI:10.1038/s41598-025-11447-3
PMID:40695984
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12283948/
Abstract

Dental caries is a prevalent global condition, and its diagnosis often requires direct clinical examination by a dentist. However, access to traditional dental care can be limited due to high costs, availability, and patient discomfort. To address these limitations, this study introduced a remote caries detection model using a ResBlock-AutoEncoder that generates domain-specific pre-trained weights. The model demonstrated exceptional performance, achieving an accuracy of 0.9989, an F1-score of 0.9979, and a precision of 1.0, while maintaining a low average inference time of 5.7939 seconds. Furthermore, Grad-CAM was employed to enhance interpretability by visually localizing caries, ensuring model reliability. Notably, this high precision is attributed to the specific characteristics of frontal oral images, which allow for clearer visibility of caries compared to other imaging angles. However, this also introduces a potential limitation, as it does not account for variability in other perspectives of oral images. To improve generalization, future research will incorporate multi-angle dental images.

摘要

龋齿是一种全球普遍存在的病症,其诊断通常需要牙医进行直接临床检查。然而,由于成本高昂、可及性问题以及患者不适等因素,获得传统牙科护理可能受到限制。为解决这些限制,本研究引入了一种使用ResBlock-自动编码器的远程龋齿检测模型,该模型可生成特定领域的预训练权重。该模型表现卓越,准确率达到0.9989,F1分数为0.9979,精确率为1.0,同时平均推理时间保持在较低的5.7939秒。此外,采用Grad-CAM通过对龋齿进行视觉定位来增强可解释性,确保模型的可靠性。值得注意的是,这种高精度归因于正面口腔图像的特定特征,与其他成像角度相比,该特征能使龋齿更清晰可见。然而,这也带来了一个潜在限制,即它没有考虑口腔图像其他视角的变异性。为提高泛化能力,未来研究将纳入多角度牙科图像。

相似文献

[1]
CNN-based remote dental diagnosis model for caries detection with grad-CAM.

Sci Rep. 2025-7-22

[2]
Diagnosis and management of dental caries throughout life.

NIH Consens Statement. 2001

[3]
Development and Validation of a Convolutional Neural Network Model to Predict a Pathologic Fracture in the Proximal Femur Using Abdomen and Pelvis CT Images of Patients With Advanced Cancer.

Clin Orthop Relat Res. 2023-11-1

[4]
A deep learning approach to direct immunofluorescence pattern recognition in autoimmune bullous diseases.

Br J Dermatol. 2024-7-16

[5]
Short-Term Memory Impairment

2025-1

[6]
Atraumatic restorative treatment versus conventional restorative treatment for managing dental caries.

Cochrane Database Syst Rev. 2017-12-28

[7]
Sealants for preventing dental caries in primary teeth.

Cochrane Database Syst Rev. 2022-2-11

[8]
Uses of Different Machine Learning Algorithms for Diagnosis of Dental Caries.

J Healthc Eng. 2022

[9]
Direct composite resin fillings versus amalgam fillings for permanent posterior teeth.

Cochrane Database Syst Rev. 2021-8-13

[10]
School dental screening programmes for oral health.

Cochrane Database Syst Rev. 2022-7-27

本文引用的文献

[1]
Systematic review of oral health in slums and non-slum urban settings of Low and Middle-Income Countries (LMICs): Disease prevalence, determinants, perception, and practices.

PLoS One. 2024

[2]
Artificial intelligence in diagnosing dens evaginatus on periapical radiography with limited data availability.

Sci Rep. 2023-8-14

[3]
Semantic Decomposition Network With Contrastive and Structural Constraints for Dental Plaque Segmentation.

IEEE Trans Med Imaging. 2023-4

[4]
Global prevalence of edentulism and dental caries in middle-aged and elderly persons: A systematic review and meta-analysis.

J Dent. 2022-12

[5]
Deep learning for caries detection: A systematic review.

J Dent. 2022-7

[6]
A two-stage deep learning architecture for radiographic staging of periodontal bone loss.

BMC Oral Health. 2022-4-1

[7]
DeepGrading: Deep Learning Grading of Corneal Nerve Tortuosity.

IEEE Trans Med Imaging. 2022-8

[8]
Caries Detection on Intraoral Images Using Artificial Intelligence.

J Dent Res. 2022-2

[9]
Deep learning for early dental caries detection in bitewing radiographs.

Sci Rep. 2021-8-19

[10]
Diagnosis of interproximal caries lesions with deep convolutional neural network in digital bitewing radiographs.

Clin Oral Investig. 2022-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索