Kim Donghyeok, Kim Jangkyum, Choi Seong Gon
Department of Data Science, Sejong University, Seoul, 05006, Republic of Korea.
Department of Artificial Intelligence and Data Science, Sejong University, Seoul, 05006, Republic of Korea.
Sci Rep. 2025 Jul 22;15(1):26555. doi: 10.1038/s41598-025-11447-3.
Dental caries is a prevalent global condition, and its diagnosis often requires direct clinical examination by a dentist. However, access to traditional dental care can be limited due to high costs, availability, and patient discomfort. To address these limitations, this study introduced a remote caries detection model using a ResBlock-AutoEncoder that generates domain-specific pre-trained weights. The model demonstrated exceptional performance, achieving an accuracy of 0.9989, an F1-score of 0.9979, and a precision of 1.0, while maintaining a low average inference time of 5.7939 seconds. Furthermore, Grad-CAM was employed to enhance interpretability by visually localizing caries, ensuring model reliability. Notably, this high precision is attributed to the specific characteristics of frontal oral images, which allow for clearer visibility of caries compared to other imaging angles. However, this also introduces a potential limitation, as it does not account for variability in other perspectives of oral images. To improve generalization, future research will incorporate multi-angle dental images.
龋齿是一种全球普遍存在的病症,其诊断通常需要牙医进行直接临床检查。然而,由于成本高昂、可及性问题以及患者不适等因素,获得传统牙科护理可能受到限制。为解决这些限制,本研究引入了一种使用ResBlock-自动编码器的远程龋齿检测模型,该模型可生成特定领域的预训练权重。该模型表现卓越,准确率达到0.9989,F1分数为0.9979,精确率为1.0,同时平均推理时间保持在较低的5.7939秒。此外,采用Grad-CAM通过对龋齿进行视觉定位来增强可解释性,确保模型的可靠性。值得注意的是,这种高精度归因于正面口腔图像的特定特征,与其他成像角度相比,该特征能使龋齿更清晰可见。然而,这也带来了一个潜在限制,即它没有考虑口腔图像其他视角的变异性。为提高泛化能力,未来研究将纳入多角度牙科图像。
NIH Consens Statement. 2001
2025-1
Cochrane Database Syst Rev. 2017-12-28
Cochrane Database Syst Rev. 2022-2-11
Cochrane Database Syst Rev. 2021-8-13
Cochrane Database Syst Rev. 2022-7-27
IEEE Trans Med Imaging. 2023-4
J Dent. 2022-7
BMC Oral Health. 2022-4-1
IEEE Trans Med Imaging. 2022-8
J Dent Res. 2022-2
Sci Rep. 2021-8-19