Chen Yongqi, Li Meng, Wang Xiaodong, Chen Wenyi, Liu Siqi, Zhang Min, Lyu Wanyu, Li Nanhai, Gao Han, Liu Weidi, Shi Xiao-Lei, Chen Zhi-Gang
School of Chemistry and Physics, ARC Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, Queensland, Australia.
Central Analytical Research Facility, Queensland University of Technology, Brisbane, Queensland, Australia.
Nat Commun. 2025 Jul 23;16(1):6796. doi: 10.1038/s41467-025-62078-1.
Coinage metals Cu and Ag are widely reckoned as effective dopants in thermoelectric materials due to their ability to optimise carrier concentration while preserving high carrier mobility, attributed to their inherent dynamic features. Traditionally, Cu/Ag ions are introduced through eutectic reactions, which inevitably result in interstitial doping. Here, we develop an innovative solid solution doping strategy that enables targeted doping, whereby Cu ions exclusively occupy host lattice sites rather than interstitial sites. By combining first-principles calculations with in-situ experiments, we demonstrate that this targeted doping approach relies on ion diffusion and induces lattice renormalisation, effectively reducing lattice defects and suppressing hole concentration. Consequently, the 1 at.% Cu doped GeSbTe sample exhibits an exceptional figure-of-merit of 2.3 at 775 K along with a desirable average value of 1.4 scoping 300 to 775 K. The power density of the corresponding single-leg thermoelectric module is 2.23 W·cm under a temperature difference of 475 K. This work not only explains the kinetics behind dynamic doping behaviours, but also provide an original method to achieve high-quality functional materials with less lattice defects and a high carrier mobility.
由于具有优化载流子浓度同时保持高载流子迁移率的能力,归因于其固有的动力学特性,硬币金属铜(Cu)和银(Ag)被广泛认为是热电材料中的有效掺杂剂。传统上,Cu/Ag离子是通过共晶反应引入的,这不可避免地会导致间隙掺杂。在此,我们开发了一种创新的固溶体掺杂策略,该策略能够实现定向掺杂,即Cu离子仅占据主体晶格位置而非间隙位置。通过将第一性原理计算与原位实验相结合,我们证明这种定向掺杂方法依赖于离子扩散并诱导晶格重整化,有效地减少晶格缺陷并抑制空穴浓度。因此,1 at.% Cu掺杂的GeSbTe样品在775 K时表现出2.3的优异品质因数,在300至775 K范围内的平均值为1.4。在475 K的温差下,相应单腿热电模块的功率密度为2.23 W·cm 。这项工作不仅解释了动态掺杂行为背后的动力学,还提供了一种原始方法来实现具有较少晶格缺陷和高载流子迁移率的高质量功能材料。