一个用于预测抗药性进化的概念验证实验理论模型。

A proof-of-concept experimental-theoretical model to predict pesticide resistance evolution.

作者信息

Li Luna Qingyang, Parts Liisa, Madgwick Philip, King Kayla, Flemming Anthony, Woollard Alison

机构信息

Department of Biochemistry, University of Oxford, Oxford, UK.

Syngenta, Jealott's Hill International Research Centre, Bracknell, UK.

出版信息

Heredity (Edinb). 2025 Jul 23. doi: 10.1038/s41437-025-00781-x.

Abstract

Insecticide resistance poses a major challenge to sustainable agriculture, yet studying its evolution in laboratory settings is notoriously difficult due to challenges related to maintaining large populations of pest species. While theoretical models offer valuable predictions, an experimental system for validating insecticide resistance management strategies remains lacking. Here, we explore C. elegans as a model organism for studying insecticide resistance evolution. We developed an in silico population genetics model and tested its predictive power in laboratory experiments, comparing the computational predictions to experimental resistance selection dynamics. Two compounds with distinct modes of action were tested to assess the generalizability of this system across different resistance mechanisms. Our results showed that in silico predictions generally resembled multigenerational in vivo resistance selection outcomes, demonstrating the feasibility of integrating in vivo and in silico modelling approaches in resistance research. By bridging the gap between theoretical and empirical research, this framework paves the way for addressing a wide range of open questions in resistance management, permitting the development of better informed and more effective resistance management strategies for the agricultural industry.

摘要

杀虫剂抗性对可持续农业构成了重大挑战,然而,由于在维持大量害虫种群方面存在挑战,在实验室环境中研究其进化非常困难。虽然理论模型提供了有价值的预测,但仍缺乏用于验证杀虫剂抗性管理策略的实验系统。在这里,我们探索将秀丽隐杆线虫作为研究杀虫剂抗性进化的模式生物。我们开发了一个计算机种群遗传学模型,并在实验室实验中测试了其预测能力,将计算预测与实验性抗性选择动态进行比较。测试了两种具有不同作用模式的化合物,以评估该系统在不同抗性机制中的通用性。我们的结果表明,计算机预测通常类似于多代体内抗性选择结果,证明了在抗性研究中整合体内和计算机建模方法的可行性。通过弥合理论研究和实证研究之间的差距,该框架为解决抗性管理中的一系列开放性问题铺平了道路,从而能够为农业产业制定更明智、更有效的抗性管理策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索