Han Bo, Liu Weiyang, Wang Wanhui, Li Zhuolun, You Bosen, Liu Dongze, Nan Yunfeng, Ding Tiankai, Dai Zhou, Zhang Yantong, Zhang Wei, Liu Qing, Li Xuedong
Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
Front Immunol. 2025 Jul 10;16:1619361. doi: 10.3389/fimmu.2025.1619361. eCollection 2025.
INTRODUCTION: Clear cell renal cell carcinoma is a common and aggressive form of renal cell carcinoma. Its incidence continues to rise, and metastatic recurrence leads to poor clinical outcomes. Current prognostic biomarkers lack reliability. We integrated multi-omics data to discover key ccRCC genes and build a prognostic model to improve risk prediction and guide treatment decisions. METHODS: Our study integrated genome-wide CRISPR screening data from DepMap and transcriptomic profiles from TCGA to identify key genes associated with ccRCC pathogenesis. Initial screening identified 11 candidate genes through differential expression analysis and CRISPR functional validation. Using LASSO and Cox regression, we selected five key genes (GGT6, HAO2, SLPI, MELK, and EIF4A1) for model construction. The functional role of MELK was tested by knockdown experiments. Additional analyses included tumor mutation burden, immune microenvironment assessment, and drug response prediction. RESULTS: The model stratified patients into high-risk and low-risk groups with distinct survival outcomes. High-risk cases showed higher mutation loads, immunosuppressive features, and activated cytokine pathways, whereas low-risk cases displayed metabolic pathway activity. MELK knockdown reduced cancer cell proliferation and migration. High-risk patients exhibited better responses to targeted drugs such as pazopanib and sunitinib. DISCUSSION: Our study demonstrates the pivotal role of MELK in ccRCC progression. This multi-omics-driven model elucidates MELK-mediated mechanisms and their interactions with the tumor microenvironment, providing novel strategies for risk stratification and targeted therapy. Future studies will validate these findings in independent cohorts and investigate the regulatory networks of MELK to identify potential therapeutic targets.
引言:透明细胞肾细胞癌是肾细胞癌中常见且侵袭性强的一种类型。其发病率持续上升,转移性复发导致临床预后不佳。目前的预后生物标志物缺乏可靠性。我们整合多组学数据以发现关键的透明细胞肾细胞癌基因并构建预后模型,以改善风险预测并指导治疗决策。 方法:我们的研究整合了来自DepMap的全基因组CRISPR筛选数据和来自TCGA的转录组图谱,以鉴定与透明细胞肾细胞癌发病机制相关的关键基因。初步筛选通过差异表达分析和CRISPR功能验证确定了11个候选基因。使用LASSO和Cox回归,我们选择了五个关键基因(GGT6、HAO2、SLPI、MELK和EIF4A1)进行模型构建。通过敲低实验测试了MELK的功能作用。其他分析包括肿瘤突变负荷、免疫微环境评估和药物反应预测。 结果:该模型将患者分为具有明显生存结果的高风险和低风险组。高风险病例显示出更高的突变负荷、免疫抑制特征和激活的细胞因子途径,而低风险病例则表现出代谢途径活性。MELK敲低减少了癌细胞的增殖和迁移。高风险患者对帕唑帕尼和舒尼替尼等靶向药物表现出更好的反应。 讨论:我们的研究证明了MELK在透明细胞肾细胞癌进展中的关键作用。这个多组学驱动的模型阐明了MELK介导的机制及其与肿瘤微环境的相互作用,为风险分层和靶向治疗提供了新策略。未来的研究将在独立队列中验证这些发现,并研究MELK的调控网络以确定潜在的治疗靶点。
Biochem Biophys Res Commun. 2025-5-29
Cancers (Basel). 2023-3-17
Biomed Pharmacother. 2022-12
Nat Rev Urol. 2023-1
Mol Cell Probes. 2022-10