Jia Junjing, Zhang Yingyi, Lu Qianying, Tian Sijia, Zhao Yanmei, Fan Haojun
School of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China.
Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China.
Cells. 2025 Jul 16;14(14):1089. doi: 10.3390/cells14141089.
Acute lung injury (ALI), a life-threatening clinical syndrome with multifactorial origins, is characterized by uncontrolled pulmonary inflammation and disrupted alveolar-capillary barrier integrity, leading to progressive hypoxemia and respiratory failure. In this hypoxic setting, hypoxia-inducible factor (HIF)-1 is activated, acting as a central regulator of the inflammatory response and reparative processes in injured lung tissue during ALI. The role of HIF-1 is distinctly dualistic; it promotes both anti-inflammatory and reparative mechanisms to a certain extent, while potentially exacerbating inflammation, thus having a complex impact on disease progression. We explore the latest understanding of the role of hypoxia/HIF-mediated inflammatory and reparative pathways in ALI and consider the potential therapeutic applications of drugs targeting these pathways for the development of innovative treatment strategies. Therefore, this review aims to guide future research and clinical applications by emphasizing HIF-1 as a key therapeutic target for ALI.
急性肺损伤(ALI)是一种起源多因素的危及生命的临床综合征,其特征为不受控制的肺部炎症和肺泡-毛细血管屏障完整性破坏,导致进行性低氧血症和呼吸衰竭。在这种缺氧环境中,缺氧诱导因子(HIF)-1被激活,在ALI期间作为受损肺组织中炎症反应和修复过程的核心调节因子发挥作用。HIF-1的作用具有明显的双重性;它在一定程度上促进抗炎和修复机制,同时可能加剧炎症,因此对疾病进展产生复杂影响。我们探讨了对缺氧/HIF介导的炎症和修复途径在ALI中的作用的最新认识,并考虑了针对这些途径的药物在开发创新治疗策略方面的潜在治疗应用。因此,本综述旨在通过强调HIF-1作为ALI的关键治疗靶点来指导未来的研究和临床应用。