Wang Hongxing, Cheng Longdi, Yu Jianyong, Si Yang
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
Nat Commun. 2025 Jul 25;16(1):6885. doi: 10.1038/s41467-025-62164-4.
Ceramic aerogels, widely used as thermal insulation materials, are renowned for their remarkable characteristics, including ultralight weight and ultralow thermal conductivity. However, their application is often limited by susceptibility to damage under repeated dynamic thermal shocks-a challenge that remains inadequately addressed. Herein, we present a multicomponent structural engineering approach that integrates ceramic nanofibers with traditional textile knitting topology to fabricate mechanically adaptable ceramic fibrous aerogels. Benefiting from the porous nanofibrous network and the synchronized motion of the prestressed knitted topological framework, which can be readily activated to accommodate deformation while efficiently dissipating energy, the resulting aerogels exhibit exceptional mechanical properties. Specifically, our aerogels demonstrate a high tensile strength of 356.6 kPa, a compressive strength of 109.1 kPa, and remarkable mechanical adaptability in response to external stimuli. Moreover, these aerogels achieve a high fracture energy of 117.26 kJ m and display exceptional recovery from deformation after 1000 cycles of compression or 500 cycles of tension. This study elucidates the structural-property interdependence in aerogel materials through multiscale analysis and advances the rational design of the next-generation impact-absorbing systems and metamaterials.
陶瓷气凝胶作为广泛使用的隔热材料,以其卓越的特性而闻名,包括超轻重量和超低热导率。然而,它们的应用常常受到在反复动态热冲击下易受损的限制——这一挑战仍未得到充分解决。在此,我们提出一种多组分结构工程方法,将陶瓷纳米纤维与传统纺织编织拓扑结构相结合,以制造具有机械适应性的陶瓷纤维气凝胶。得益于多孔纳米纤维网络和预应力编织拓扑框架的同步运动,该框架可随时被激活以适应变形并有效耗散能量,所得气凝胶具有出色的机械性能。具体而言,我们的气凝胶表现出356.6kPa的高拉伸强度、109.1kPa的抗压强度,以及对外部刺激的显著机械适应性。此外,这些气凝胶实现了117.26kJ/m的高断裂能,并在1000次压缩循环或500次拉伸循环后显示出从变形中出色的恢复能力。本研究通过多尺度分析阐明了气凝胶材料中结构与性能的相互依存关系,并推动了下一代冲击吸收系统和超材料的合理设计。